728x90

빠르게 달리다가 돌부리에 걸리면 넘어진다. 그러나 속력이 작으면 잘 넘어지지 않는다. 턱에 걸려 넘어지기 위해서는 얼마나 빨리 달려야 하는가를 살펴보기 위해서 간단한 물리적인 상황을 만들자. 정육면체 모양의 물체가 매끄러운 바닥을 일정한 속도로 달리다가 작은 턱에 걸릴 때 넘어질 조건을 보면

 

1. 턱이 외력을 작용하므로 충돌 전후 역학적 에너지의 보존을 보장할 수 없다.

2. 턱이 외력을 주므로 물체의 운동량도 보존이 안된다.

3. 물체가 넘어질 때 턱을 기준으로 회전을 하므로 이 지점을 회전축으로 할 때 턱이 육면체에 주는 힘은 토크를 만들지 않는다. 따라서 충돌 직전-직후의 턱을 회전축으로 하는 각운동량은 보존이 된다.(수직 항력이나 중력도 작용하는데 이 두 힘은 impulsive 한 힘이 아니다. 충돌이 순간적으로 일어난다면, 유한한 크기의 힘이 만드는 충격량은 (충돌 시간->0 이므로) 힘 x충돌 시간->0 이므로 (각)운동량의 변화에 기여하지 않는다.) 물론, 넘어지는 과정에서는 각운동량은 바꾸지만 이 문제에서 필요한 것은 충돌 직후의 각운동량으로 이 값은 충돌 직전과 같고 이를 이용해서 충돌 직후의 운동에너지$(K_f = {L_f^2}/{2I})$를 계산할 수 있다)

$$ \text{충돌 직전 각운동량} (L_i = Mva) =\text {충돌 직후 각운동량} (L_f) = L \quad (w.r.t.\text {턱})$$

 

충돌 직후에는 턱을 회전축으로 회전을 한다. 턱(정육면체 한 변)에 대한 회전관성은 

$$I=\frac{8Ma^2 }{3} \quad \text{정육면체 변에 대한 회전관성}$$

넘어가는 과정에서는 중력만 일을 하므로 정육면체의 역학적 에너지는 보존이 된다. 따라서 충돌 직후 운동에너지(턱에 대한 회전에너지=$K$)가 무게중심이 가장 높이 올라갔을 때 위치에너지의 증가$(\Delta U = Mga (\sqrt{2}-1))$보다 더 크면 턱을 기준으로 완전하게 회전할 수 있다.

$$K=\frac{L^2 }{2I }= \frac{3M v^2}{16 }\ge Mga (\sqrt{2}-1)=\Delta U,\\ \therefore v \ge 4\sqrt{\frac{\sqrt{2}-1}{3}ga} = 1.486\sqrt{ga}.$$

Posted by helloktk

댓글을 달아 주세요

  1. 어려워요 2018.03.29 16:52  댓글주소  수정/삭제  댓글쓰기

    식이 나오는 과정을 더 자세히 알려주실수 있나요??