평면 상에 주어진 점들의 convex hull을 구하는 알고리즘 중의 하나인 Graham scan에서는 먼저 주어진 점들을 한 점을 기준으로 각도로 정렬하는 과정이 필요했다. 그러면 점들이 순차적으로 연결된 단순 다각형에서는 sorting과정이 없이 Graham scan 알고리즘을 바로 적용이 가능한 것일까? 이에 대한 counter example은 쉽게  찾을 수 있다. 단순 폴리곤에 대해서도 항상 각도에 대한 정렬 과정이 필요한 것인가? 답은 아니다. 정렬 과정이 없이도 단순 폴리곤에 대해서는 쉽게 convex hull을 구할 수 있는 알고리즘이 존재한다. 정렬 과정이 없이 단순 폴리곤의 convex hull을 찾는 알고리즘에 대해서 알아보자.

Melkman Algorithm;

우선 폴리곤의 이웃하는 세 꼭짓점을 잡아서, 반시계 방향의 삼각형을 구성한다. 이 삼각형을 deque에 넣는다 (bottom = top). 폴리곤을 순환하면서 새 점이 들어올 때 이미 만들어진 convex hull의 내부점이 아니면 이 점이 포함되도록 convex hull을 업데이트한다: Graham scan 알고리즘의 scanning 과정을 bottom을 기준으로 반시계 방향으로 convexity를 만족시킬 때까지 bottom을 제거하고, top을 기준으로는 시계방향으로 convexity를 만족시킬 때까지 top을 제거한다. 이 과정이 끝나면 새 점을 deque에 추가한다. 이 과정을 나머지 모든 점들에 대해서도 진행한다.

int LEFTSIDE(CPoint A, CPoint B, CPoint C){ // cross(AB, AC) > 0: C가 AB 대해서 왼쪽
	return ((B.x - A.x) * (C.y - A.y) - (B.y - A.y) * (C.x - A.x)) > 0;
}
int convexhull_spolygon(std::vector<CPoint>& pts, std::vector<CPoint>& hull) {
    int N = pts.size();
    if (N < 3) return 0;
    std::vector<CPoint> Q(2 * N + 1);  // deque;
    int bot = N - 2, top = bot + 3;
    // |0|1|......|N-2|N-1|N+0|N+1|N+2|..............|2N|;
    //              bot    top    
    Q[bot] = Q[top] = pts[2];
    if (LEFTSIDE(pts[0], pts[1], pts[2])) { //2->0->1->2; Q에 ccw로 입력;
        Q[bot + 1] = pts[0]; Q[bot + 2] = pts[1];
    } else {
        Q[bot + 1] = pts[1]; Q[bot + 2] = pts[0];
    }
    int i = 2; // last touched index;
    while (++i < N) {
        // 기존의 convex_hull에 들어있으면 제외.
        if (LEFTSIDE(Q[bot + 0], Q[bot + 1], pts[i]) && 
            LEFTSIDE(Q[top - 1], Q[top + 0], pts[i]))
            continue;
        // bottom에 대해서 ccw 방향으로 체크(bot 증가 방향)
        // pts[i]가 (bot)->(bot+1)라인의 오른쪽에 있으면, 기존의 bottom을 제외;
        while (!LEFTSIDE(Q[bot], Q[bot + 1], pts[i]) && (bot < top)) bot++;
        Q[--bot] = pts[i];
        // 추가점에서 top->top-1의 ccw 방향으로 convexity 체크하여 만족하지 않은 경우
        // top을 감소
        while (!LEFTSIDE(Q[top - 1], Q[top], pts[i]) && (top > bot)) top-- ;
        Q[++top] = pts[i];
    }
    hull.resize(top - bot);
    for (int i = hull.size() - 1; i >= 0; --i) hull[i] = Q[i + bot];
    return hull.size();
};

**네이버 블로그 이전;

 

 

728x90

'Computational Geometry' 카테고리의 다른 글

Minimum Enclosing Circle  (0) 2021.03.01
Creating Simple Polygons  (0) 2021.01.25
단순 다각형의 무게중심  (0) 2021.01.24
단순 다각형의 면적(2D)  (0) 2021.01.23
삼각형 외접원의 Inclusion Test  (0) 2020.12.30
Posted by helloktk
,

단순 다각형(simple polygon)의 무게중심(center of gravity or center of mass)은 다각형을 균일한 밀도의 판으로 생각했을 때 판의 무게중심과 같다. 가장 단순한 다각형인 삼각형의 무게중심은 세 꼭짓점의 산술평균으로 표현된다.

$$ \text{CoG} = \frac{1}{3} ({{\bf P} + {\bf Q} + {\bf R}}).$$

증명: 삼각형의 한 변 PQ에 나란한 띠로 삼각형을 분할하자. 그러면 각 띠의 무게중심은 띠의 기하학적 중심이므로 꼭지점 R와 변 PQ의 중심을 연결한 선분 RA상에 있어야 한다. 그리고 띠의 무게중심은 그 점에 모든 질량이 뭉친 것으로 생각할 수 있으므로 전체 삼각형의 무게중심은 선분 RA상의 어느 지점에 있어야 한다. 마찬가지 논리로  삼각형을 선분 QR에 나란한 띠로 분할나누면 이 띠들의 무게중심은 선분 PB상에 있음을 알 수 있다. 따라서 삼각형의 무게중심도 PB상의 한점이어야 하므로 선분 PB와 선분 RA의 교점이 무게중심이 된다. 

다각형은 삼각형으로 분할되므로 이 분할된 삼각형의 무게중심을 이용하면 쉽게 계산할 수 있다. 분할된  삼각형의 무게중심을 면적으로 가중치를 준 평균값이 다각형의 무게중심이 된다. 

 

실제 계산에서는 다각형을 삼각 분할하지 않고도 간단한 방법에 의해서 무게중심을 구할 수 있다. 원점과 다각형의 각 변의 꼭짓점을 이용해서 삼각형들을 구성하면 원래의 다각형을 겹치게(원점이 내부에 있으면 겹침이 없다) 분할할 수 있다. 분할된 삼각형으로 무게중심을 구할 때 겹치는 영역의 기여를 제거해야 한다. 그런데 다각형 밖의 영역을 분할하는 삼각형은 다각형 내부를 분할하는 삼각형과는 다른 orientation을 가지게 된다. 삼각형의 면적은 한 꼭짓점을 공유하는 두 변의 외적에 비례하므로, 반대의 orientation을 갖는 삼각형은 자동으로 반대 부호의 면적을 가지게 된다. 따라서 분할된 삼각형 면적 가중치를 외적으로 주어서 무게중심을 구하면 겹치는 영역이 자동으로 상쇄되는 효과를 얻을 수 있다.

노란색 영역에 있는 분할 삼각형은 음의 면적

$$\begin{align} \text{CoG} &= \frac{1}{\text{다각형 면적}} \sum (\text{삼각형 CoG})  (\text{면적})  \\ &= \frac{1}{\text{다각형 면적}} \sum \frac{1}{3} \left( {\bf V}_i + {\bf V}_{i+1} + {\bf O}\right ) \frac{ {\bf V}_{i} \times {\bf V}_{i+1} }{2} \\ &= \frac{1}{3}\frac{1}{   \text{다각형 면적} }\sum ( {\bf V}_{i} + {\bf V}_{i+1}) \frac{{\bf V}_{i} \times {\bf V}_{i+1}}{2} \end{align}$$ 

다각형의 면적($=\sum \frac{1}{2}({\bf V}_i \times {\bf V}_{i+1})$)을 구할 때 삼각형과 동일하게 orientation에 따라 부호를 포함하도록 설정하면 다각형의 면적 부호가 삼각형의 면적 부호로 상쇄되므로 다각형의 orientation에 무관하게 성립하는 공식이 된다.

CPoint polygon_centroid(CPoint V[], int N) {
    double cx = 0, cy = 0, area2 = 0;
    for(int i = 0, j = N - 1; i < N; j = i++) {
        double tri_area2 = V[i].x * V[j].y - V[i].y * V[j].x; // area * 2;
        cx += (V[i].x + V[j].x) * tri_area2;
        cy += (V[i].x + V[j].x) * tri_area2;
        area2 += tri_area2;                                   //total area * 2
    }
    cx /= 3 * area2;
    cy /= 3 * area2;
    return CPoint(int(cx + 0.5), int(cy + 0.5))
};

** 네이버 블로그에서 수정 이전;

728x90

'Computational Geometry' 카테고리의 다른 글

Creating Simple Polygons  (0) 2021.01.25
단순 다각형의 Convex hull  (0) 2021.01.24
단순 다각형의 면적(2D)  (0) 2021.01.23
삼각형 외접원의 Inclusion Test  (0) 2020.12.30
Point in Polygon  (2) 2020.12.14
Posted by helloktk
,