진자의 주기를 구할 때 보통 작은 진동 근사를 사용한다. 진자의 진폭이 크지 않는 경우 주기는 진폭에 무관하게 일정한 값 $T_0=2\pi \sqrt {\frac {\ell}{g}}$를 갖는다. 그럼 진폭이 커지는 경우는 어떻게 될까?

운동 방정식을 써도 되지만 역학적 에너지가 보존되므로 이를 이용하면(회전 관성: $I=m\ell^2$, 진폭=$\theta_0$)

$$ \frac {1}{2} I \Big(\frac {d\theta}{dt}\Big)^2 + mg \ell (1 - \cos\theta)=\text{const}= mg\ell (1- \cos \theta_0) \\  \rightarrow \quad \Big(\frac {d\theta}{dt} \Big)^2  =\frac {2g}{\ell} (\cos \theta- \cos \theta_0).$$

우변을 $\theta_0, ~\theta$에 대해서 전개하면

$$ \Big( \frac { d\theta}{dt } \Big)^2   = \frac {g}{\ell}\Big(\theta_0^2 -\frac {1}{12} \theta_0^4 - \theta^2 + \frac {1}{12} \theta^4+...\Big) =\frac{g}{\ell}(\theta_0^2 -\theta^2) \Big( 1 - \frac{1}{12} (\theta_0^2 + \theta^2)+...\Big)$$로 써지는데 작은 각 근사를 벗어났을 때 가장 큰 기여를 하는 $-(\theta_0^2 + \theta^2 ) /12$항이  음의 기여를 한다. 이는 같은 위치에서 작은 각 근사를 할 때보다 각속도가 더 작아짐을 의미한다. 따라서 진자가 더 느리게 움직여서 주기가 길어질 것이라는 예측을 구체적인 계산 없이도 할 수 있게 된다.

 

이제 주기를 구해보자. 에너지 보존식에서 변수 분리를 해서 적분하면 주기에 대한 식

$$T = \int dt = 4 \sqrt {\frac {\ell}{2g}} \int_0^{\theta_0} {\frac {d\theta}{\sqrt {\cos \theta - \cos \theta_0}}}$$을 얻는다. 여기서 $\sin(\theta/2) = \sin (\theta_0/2) \sin(\varphi )$로 치환을 하면

$$T = 4\sqrt { \frac { \ell }{g}} \int_0^{\pi/2} {\frac {d \varphi}{\sqrt {1 - k^2 \sin^2 \varphi}}}, \quad k^2 = \sin^2(\theta_0/2).$$

진폭이 작은 경우($\theta_0  \ll 1 ~\Rightarrow ~k\rightarrow 0)$는 적분 값이 $\frac {\pi}{2}$이므로 $T \rightarrow 2\pi \sqrt {\frac {\ell}{g} }$가 됨을 확인할 수 있다.  위 적분은 타원 적분이라고 부르고 $k$가 주어지면 수치 연산을 통해서 그 값을 얻을 수 있다. 

 

좀 더 직관적으로 진폭에 따른 주기의 변화를 보기 위해서 (진자의 경우 $k^2 \le \frac {1}{2}$이므로) 급수 전개를 하면, 

$$\frac {1}{\sqrt {1-k^2 \sin^2\varphi}}   = 1 +\frac {1}{2} k^2\sin^2 \varphi +\frac {1}{2}\frac {3}{2} k^4 \sin^4 \varphi +\dots $$

이므로 주기는

$$T = 2\pi \sqrt { \frac {\ell}{g} } \left [ 1 + \Big( \frac {1}{2} \Big)^2 k^2 + \Big( \frac {1}{2} \frac {3}{4} \Big)^2 k^4 + \dots \right]\qquad \left( k = \sin \frac{\theta_0}{2} \right)$$

로 표현된다. 이 식은 진자의 진폭($\theta_0$)이 커지면 주기도 길어진다는 것을 명확히 보여준다.

강의동영상을 볼 수 있는 곳:

youtu.be/34zcw_nNFGU

 

 
 
 
 
 
728x90

'Physics > 역학' 카테고리의 다른 글

바닥에 먼저 닿는 물체는?  (0) 2021.01.21
마찰력은 도움이 될까?  (0) 2021.01.21
물이 새는 두레박이 달린 진자의 주기는  (0) 2021.01.17
왜 공은 움직이지 않을까?  (0) 2021.01.17
두레박이 달린 진자  (0) 2021.01.17
Posted by helloktk
,

지구가 물체에 작용하는 중력의 세기는 지구의 중심(무게중심)에서 거리의 제곱에 반비례하게 작용한다. 컵 속에 각설탕을 넣는다고 하자. 각설탕은 지구 중력과 컵 중력을 받고 아래로 내려가지만 컵의 무게중심에 가까워질수록 거리가 작아지므로 컵이 작용하는 중력이 매우 커지게 된다. 각설탕이 어찌어찌해서 컵의 무게중심에 매우 가까운 아래쪽 적당한 위치에 도달하는 경우(B:경우) 위쪽으로 작용하는 컵의 중력이 아래쪽으로 작용하는 지구의 중력을 상쇄할 수 있다. 이 경우 각설탕은 무게중심 약간 아래쪽에서 떠있어야 하는데 이런 현상은 누구도 본 적이 없다. 왜 그럴까?

 
728x90

'Physics > 역학' 카테고리의 다른 글

왜 공은 움직이지 않을까?  (0) 2021.01.17
두레박이 달린 진자  (0) 2021.01.17
불타는 양초 시소  (3) 2021.01.17
용수철 저울의 눈금은?  (0) 2021.01.17
태양계 행성의 hodograph  (0) 2021.01.16
Posted by helloktk
,

두 바스켓이 움직이지 않으면(예를 들면, 양쪽 줄을 서로 묶어서) 용수철 저울의 눈금은 3 kg으로 나올 것이다(도르래, 줄의 무게 무시). 두 바스켓이 움직임을 시작하면 용수철 저울의 눈금은 

  1. 3 kg 
  2. 3 kg 보다 크다.
  3. 3 kg 보다 작다.

hint: 구체적인 계산을 하지 않더라도 질량중심의 운동으로 고려하면 파악할 수 있다.

 
 
 
 
728x90
Posted by helloktk
,

태양계의 행성 운동에서 각운동량은 보존이 된다(Kepler의 제2법칙). 이는 태양이 행성에 작용하는 힘인 만유인력이 중심력의 형태를 띠고 있기 때문이다. 식으로는 태양에서 행성까지 위치 벡터를 $\vec {r}$이라면 태양이 행성에 작용하는 만유인력은 $\vec {F} = \frac {GMm}{r^3}\vec {r}$로 쓸 수 있으므로 만유인력이 만드는 토크가 $\vec {\tau} = \vec {r}\times \vec {F}=0$임을 쉽게 알 수 있다. 따라서 각운동량 보존은 자명해진다.

만약 행성의 위치를 재는 원점을 태양이 아니라 다른 지점으로 잡으면 어떻게 될까? 이 경우 만유인력의 방향과 위치 벡터의 방향이 나란하지 않으므로 토크가 0이 안된다. 그럼 각운동량은 원점을 어디로 잡는가에 따라 보존되기도 하고 안되기도 하는 물리량일까? 무엇을 놓치고 있는 것일까?

 
728x90
Posted by helloktk
,

사람이 걷는 동작은 복잡하지만 몇 가지 가정을 하면 단순한 강체의 운동으로 근사를 할 수 있다. 우선 사람이 걷는 동안 항상 한 발은 땅을 딛고 있다. 그리고 땅을 딛고 있는 발을 기준으로 몸의 질량중심은 원호를 그리면서 거의 일정한 속도로 움직이게 된다. 사람을 질량중심에 모든 질량이 뭉친 점으로 근사를 하면 걷는 동작은 거의 질량이 없는 막대(다리: 길이=$L$)에 매달린 역진자(inverted pendulum) 운동과 비슷하다고 볼 수 있다. 또한 원호를 따라 중심이 이동하는 속력은 거의 일정하다고 근사할 수 있다.

이 경우에 질량중심은 등속 원운동을 한다고 볼 수 있고, 뉴턴의 제2법칙에 의해서 질량중심에서 발 쪽을 향하는 힘 성분이 구심력 역할을 한다. 구심력 역학을 할 수 있는 힘은 중력, 수직항력, 그리고 마찰력이 있다.

수직에서 $\theta$만큼 기울어졌을 때 등속원운동의 가속도 벡터는

$$ \vec{a} =\frac{V^2}{L} (-\sin \theta \hat{x} -\cos \theta \hat{y})$$

이고,  운동 방정식의 수식 성분을 보면 중력과 수직항력이 기여하므로

$$ \sum F_y = N - mg = m a_y = -\frac{m V^2}{L} \cos \theta $$

움직이는 속력이 너무 빠르면 달리는 동작이 되고, 이 경우 양발이 땅에서 떨어지게 된다. 발이 땅에서 떨어지지 않으려면  수직항력 $N\ge0$인 조건을 만족하도록 걷는 속력을 조절해야 한다. 

$$N \ge  0 \quad \rightarrow  \quad V \le  \sqrt{\frac{gL }{\cos \theta}}$$

원호를 그리며 움직이는 동안 이 관계가 성립해야 하므로 걷기가 가능한 최대속력은:

$$V_\text{max} = \sqrt{gL}$$

사람을 너무 단순화시킨 감은 있지만 왜 다리가 긴 사람이 더 빨리 걸을 수 있는지를 물리 법칙으로 추정할 수 있다는 것을 보여준다. 사람을 좀 더 복잡한 강체로 근사하더라도 $\sqrt{gL}$ 앞의 factor만 바뀔 것이다.  사람이 걷는 동안 땅을 딛지 않는 발은 약간 구부러진 상태로 엉덩이를 축으로 일종의 물리진자처럼 행동하는데 이를 이용해도 역시 같은 추정치를 얻을 수 있다.

 

다리 길이가 $L=1\text{m}$이면,  $V_\text{max}= \sqrt{(1 \text{m}) \times (9.8\text{m/s}^2)} = 3.13\text{m/s}=11.3\text{km/h}$. 경보 세계기록이 대략 $15\text{km/h}$이므로 합리적인 추정이 된다.

 

youtu.be/HypJY1XWkWY

728x90
Posted by helloktk
,