이미지에서 관찰된 점집합이 $\{(x_i, y_i)| i = 1, 2,\dots, N\}$이 있다. 이 점집합을 직선 $y = a + bx$ 로 피팅을 하고 싶을 때, 보통 최소자승법을 이용하는데, 원리는 직선의 방정식이 예측한 $y$값과 실제 관찰한 $y$값의 차이의 제곱(=square deviation)을 최소화시키는 직선의 기울기 $a$와 절편 $b$를 찾는 것이다:

$$\chi^2(a, b) = \sum_i |y_i - (b x_i +a) |^2 $$

데이터를 얻는 측정 과정에서 측정값 $y_i$는 랜덤 노이즈를 포함하게 되고, 이 노이즈는 참값 $y(x)$ 근방에서 정규분포를 한다고 가정을 할 수 있다. 만약 모든 측정의 노이즈가 동일한 표준편차 $\sigma$를 갖게 된다면, $N$개의 관측 데이터가 나타날 확률(likelihood)은 (개별 측정은 IID 조건을 만족한다고 전제)

$$P = \prod_{i} e^{ -\frac{ | y_i -  (bx_i + a)|^2 }{2\sigma^2 }  }$$

의 형태가 된다. 따라서 최소자승법은 이 likelihood를 최대화시키는 파라미터를 찾는 방법이 된다. 최소자승법은 피팅 파라미터를 주어진 데이터를 이용해서 표현할 수 있는 장점은 있지만, outliers에 대해서 매우 취약하다 (아래의 결과 그림을 참조). 이는 적은 수의 outlier도 χ2에 큰 기여를 할 수 있기 때문이다. 따라서 피팅을 좀 더 robust 하게 만들기 위해서는 outliers가 likelihood에 기여하는 정도를 줄여야 한다. 이를 위해서는 likelihood의 지수 인자를 큰 에러에서 덜 민감하게 반응하는 꼴로 바뀌어야 한다. 이를 만족하는 가장 간단한 것 방법 중 하나가 square-deviation 대신에 absolute-deviation을 이용하는 것이다:

$$\text{absolute deviation} = \sum _i | y_i - (bx_i + a)|   .$$

그러나 이 식을 사용하는 경우에는 최소자승법과 다르게 기울기 $a$와 절편 $b$를 주어진 데이터 $\{(x_i, y_i)\}$로 표현할 수 없고, 반복적인 방법을 이용해서 찾아야 한다. 


수열 $\{c_i\}$에 대해
합 $\sum_{i} |c_i - a|$
은 $a$가 수열의 median 값일 때 최솟값을 갖는다는 사실을 이용하면 (증명: 극값을 구하기 위해서 $a$에 대해서 미분하면, $0=(\sum_{c_i > a} 1)-(\sum_{c_i < a} 1)$: 합은 $a$가 $c_i$ 보다 큰 경우와 작은 경우로 분리. 따라서 0이 되기 위해서는 작은 경우와 큰 경우의 수가 같아야 한다. 고로, $a = \text{median}\{c_i\}$ q.e.d.). 고정된 절편 $b$에 대해서 absolute deviation을 최소로 만드는 기울기 $a$는

$$a= \text{median} \{ y_i - b x_i\}$$

임을 알 수 있다. 그리고  absolute deviation 식을 절편 $b$에 대해서 미분해서

$$0 = \sum_i \text{sign} \left( y_i - (bx_i +a) \right)$$

을 얻는데, 위에서 구한 기울기 $a$를 대입한 후 bracketing and bisection 방법을 이용하면 절편 $b$를 얻을 수 있다(불연속 함수이므로 일반적으로 근을 구하는 방법을 사용하는 것은 위험하다). 아래의 코드는 이를 구현한 것이다.

 

double FitLine_LS(std::vector<double>& x, std::vector<double>& y, double *a, double *b);

더보기
// 최소자승법을 이용한 직선 추정:
// return (sigma[dy] / sigma[x]);
double FitLine_LS(std::vector<double>& x, std::vector<double>& y, double& a, double& b) {
    double sx = 0, sy = 0, sxx = 0, sxy = 0;
    for (int i = x.size(); i-->0;) {
        sx  += x[i];        sy  += y[i];
        sxx += x[i] * x[i]; sxy += x[i] * y[i];
    };
    const int n = x.size();
    double det = n * sxx - sx * sx;
    if (det == 0.) return -1;                   // vertical line;
    a = (sxx * sy - sx * sxy) / det;
    b = (n * sxy - sx * sy) / det;
    double chi2 = 0;
    for (int i = x.size(); i-->0;) {
        double t = y[i] - (*a + *b * x[i]);
        chi2 += t * t;
    }
    det /= n;         //det -> var(x) * n;
    // chi2 = var(dy) * n;
    // (dy vs x의 편차비)
    return  sqrt(chi2 / det);
}
// 기울기(bb)가 주어진 경우에 y-절편(median = aa)값을 추정하고, 이 때 AD값을 얻는다.
double RhoFunc(std::vector<double>& x, std::vector<double>& y,
               double bb, double& aa, double& abdev) {
    std::vector<double> h(x.size());
    for (int i = x.size(); i-->0;) h[i] = y[i] - bb * x[i];
    std::sort(h.begin(), h.end());
    // median;
    const int med = h.size()/2;
    aa = (h.size() & 1) ? h[med] : (h[med] + h[med-1])/2;

    double sum = 0;
    abdev = 0;
    for (int i = x.size(); i-->0;) {
        double d = y[i] - (bb * x[i] + aa);
        abdev += fabs(d);
        // sign-함수의 원점에서 모호함을 없애기 위해서 증폭을 시킴;
        if (y[i] != 0.) d /= fabs(y[i]);
        if (fabs(d) > DBL_EPSILON) // sign 함수의 모호함에서 벗어나면,
            sum += (d >= 0 ? x[i] : -x[i]);
    }
    return sum; // return sum{xi * sign(yi - (b * xi + a))}
};
// y = a + b * x ;
// Least Absolute Deviation:
double FitLine_MAD (std::vector<double>& x, std::vector<double>& y,
                    double& a, double& b) {
    // least square esimates for (aa, bb);
    double aa, bb, abdev;
    double sigb = FitLine_LS(x, y, aa, bb);   // estimate: y=aa + bb*x;
    double b1 = bb;
    double f1 = RhoFunc(x, y, b1, aa, abdev);
    /* bracket 3-sigma away in the downhill direction;*/
    double b2 = fabs(3 * sigb);
    b2 = bb + (f1 < 0 ? -b2 : b2);
    double f2 = RhoFunc(x, y, b2, aa, abdev);

    // if conditional added to take care of the case of a
    // line input into this function. It is needed to avoid an
    // infinite loop when (b1 == b2) (within floating point error)
    if (fabs(b2 - b1) > (sigb + 0.005)) {
        // bracketing;
        while ((f1 * f2) > 0) {
            bb = 2 * b2 - b1;
            b1 = b2; b2 = bb; 
            f1 = f2; f2 = RhoFunc(x, y, b2, aa, abdev) ;
        }
    }
    // refine until the error is a negligible number of std;
    sigb *= 0.01;
    while (fabs(b2 - b1)> sigb) {
        // bisection;
        bb = (b1 + b2) / 2.;
        if ((bb == b1) || (bb == b2)) break ;
        double f = RhoFunc(x, y, bb, aa, abdev) ;
        if ((f * f1) >= 0) {
            f1 = f; b1 = bb;
        } else {
            f2 = f; b2 = bb;
        }
    }
    a = aa; b = bb; 
    return (abdev/x.size());
}

// 붉은 선--> 최소자승법에 의한 피팅.: outlier에 매우 취약한 구조.
// 파란 선--> least absolute deviation을 이용한 피팅: outlier에 매우 robust 하다.

728x90

'Image Recognition' 카테고리의 다른 글

RANSAC: Circle Fit  (0) 2008.07.21
KMeans Algorithm  (0) 2008.07.19
EM: Binarization  (0) 2008.07.01
EM Algorithm: Line Fitting  (0) 2008.06.29
Gaussian Mixture Model  (2) 2008.06.07
Posted by helloktk
,

RANSAC Algorithm

Image Recognition 2008. 5. 24. 09:02

어떤 현상을 설명하는 이론 모델을 만들려면 현상에서 관측 데이터를 모아야 한다. 그런데 관측 데이터에는 모델에 대한 잘못된 가정이나 측정의 오차 등에서 생기는 여러 가지 형태의 노이즈가 들어 있게 마련이다. 이러한 노이즈는 모델을 정확히 예측하는 것을 방해한다. 모델 파라미터의 예측을 방해하는 데이터(outliners)가 들어 있는 관측 데이터로부터 어떻게 하면 모델을 구축할 수 있는가라는 질문에 대한 한 해결책을 RANSAC("RANdom SAmple Consensus") 알고리즘이 제공한다. 이 알고리즘은 1981년 Fischler과 Bolles에 의해서 제안되었다.

RANSAC 알고리즘에 들어가는 입력은 관측된 데이터, 관측 결과를 피팅하거나 설명할 수 있는 모델 파라미터, 그리고 신뢰성을 나타내는 파라미터를 필요로 한다.

RANSAC 알고리즘은 주어진 원본 데이터에서 일부를 임의로 선택하는 과정을 반복하여서 최적의 파라미터를 예측하는 프러시저의 형태를 가진다. 전체의 관측 데이터가 M개 있고, 모델 파라미터를 예측하는데 N개의 데이터가 필요한 경우, 알고리즘의 동작은

     1. 임의로 관측 데이터에서 N개의 부분 데이터를 선택한다.
     2. 선택 데이터를 (가상의) inlier로 생각하고 모델을 예측한다.
     3. 원본 데이터(M) 중에서 예측된 모델에 잘 맞는가를 체크한다. 잘 맞는 데이터 수를 K라고 한다.
     4. 만약에 K가 충분하면, 이 모델을 확정하고 알고리즘을 종료한다.
     5. 모델이 좋지 않으면 14 과정을  L번 반복한다.
     6. 충분한 반복 후에도 좋은 모델을 찾지 못하면 예측에 실패한 것으로 간주한다.

1. 임계값 K는 주어진 전체 데이터 중에서 어느 정도의 비율로 찾는 모델에 잘 맞는가로 판단하는 기준인데, 사용자가 결정해야 한다. 대략적으로 주어진 샘플에서 inlier의 비율을 Pg정도라고 생각되면 다음 정도로 잡으면 된다:

 
   K = M * (1- P
g)

2. 얼마나 많은 반복을 해야하는가? 주어진 관측 데이터에서 inlier일 확률이 Pg인 경우에 L번의 모델 예측 시도가 실패할 확률을 계산하여서 이것이 주어진 설정값, pfail 보다도 작은 경우에 모델 예측의 실패로 처리하므로,

  pfail   = L번의 모델예측 실패 확률
          = (한 번 시도가 실패할 확률)L
          = (1 - 한 번 시도가 성공할 확률))L
          = (1 - (랜덤 데이터가 모델을 예측할 확률)N))L
          = (1- (Pg) N)L

이 사실로부터 최대 반복 횟수는 
    
   L = log(pfail)/log(1-(Pg)N)

로 주어진다.
inlier가 반이 섞인 경우 Pg (=주어진 데이터중에서 inlier일 확률) = 0.5,
pfail = 0.01 인 경우, N = 3 (세 점만 있으면 모델 구성이 가능한 원의 피팅이 한 예)이면 최대 반복 횟수는 윗 식에 적용하면,
     
                   L = 35 회

RANSAC 알고리즘은 주어진 관측 데이터에 많은 outlier가 존재하더라도 매우 정확히 모델 파라미터를 예측할 수 있는 능력이 있는 robust 한 알고리즘이지만, 얼마나 많은 반복을 해야 하는가에 대한 상한 값이 제공되지 않는다(사용자가 pfail 를 설정한다). 따라서 사용자 설정에 의한 상한 값은 최적의 모델이 아닐 수 있다.

"The RANSAC procedure is opposite to that of conventional smoothing techniques: Rather than using as much of the data as possible to obtain an initial solution and then attempting to eliminate the invalid data points, RANSAC uses as small an initial data set as feasible and enlarges this set with consistent data when possible".

Martin A. Fischler and Robert C. Bolles (June 1981). "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24: 381–395.

예제 코드:
ransac을 이용한 라인 피팅: http://blog.naver.com/helloktk/80029006029
ransac을 이용한 원 피팅: http://kipl.tistory.com/32

 

RANSAC: Circle Fit

RANSAC 알고리즘을 써서 주어진 2차원 점집합에서 원을 추정한다. 원을 만들기 위해서는 최소한 3점이 필요하고, 또 일직선에 있지 않아야 한다. 이렇게 만들어진 원은 세 점을 꼭짓점으로 하는

kipl.tistory.com

ransac을 이용한 타원 피팅: kipl.tistory.com/110

 

RANSAC Ellipse Fitting

타원은 원뿔을 평면으로 잘랐을 때 생기는 곡선 중의 하나로 다음 이차 형식(quadratic form)으로 표현된다. . 이 이차 형식의 계수를 구하기 위해서는 타원 위의 5개의 서로 다른 점이 필요하다 $(a

kipl.tistory.com

 

728x90

'Image Recognition' 카테고리의 다른 글

Gaussian Mixture Model  (2) 2008.06.07
Rasterizing Voronoi Diagram  (0) 2008.05.26
Contour Tracing  (0) 2008.05.22
Gausssian Scale Space  (0) 2008.05.22
Watershed Algorithm 적용의 예  (2) 2008.05.21
Posted by helloktk
,