update:2024.10.28
I=Pr∫1−1√1+x1−x1(2−x)xdx

복소함수
f(z)=(1+z1−z)1/21(2−z)z
의 contour Γ에 대한 적분을 고려한다. z=±1이 branch point이고, z=0,2은 simple pole이다. cut line은 그림처럼 잡고, 위상은 0≤arg(z+1)≤2π,−π≤arg(1−z)≤π로 선택한다.

residue 정리에 의해서
∫Γf(z)dz=(∮C∞−∑∫Ci)f(z)dz=2πi×Res(z=2)=√3π→ ∑∫Cif(z)dz=−√3π
C1: z+1=ϵeiθ ∫C1f(z)dz=O(√ϵϵ)→0
C5: z−1=ϵeiθ ∫C5f(z)dz=O(√ϵ)→0
C3: z=ϵeiθ (θ:π→2π)z+1=ei2πz−1=e−iπ→1−z=ei0이므로
√1+z1−z=√ei2πei0=eiπ→∫C3f(z)dz=eiπ∫2ππiϵeiθ2ϵeiθdθ=−iπ2.
C7: z=ϵeiθ (θ:0→π)z+1=ei0z−1=eiπ→1−z=ei0이므로
√1+z1−z=√ei0ei0=1→∫C7f(z)dz=∫π0iϵeiθ2ϵeiθdθ=iπ2
C2+C4: z+1=(x+1)e2iπ (x:−1→1)z−1=(1−x)e−iπ→1−z=(1−x)ei0이므로
∫C2+C4=eiπ∫1−1√1+x1−xdx(2−x)x=−I.
C6+C8: z+1=(x+1)ei0 (x:1→−1)z−1=(1−x)eiπ→1−z=(1−x)ei0이므로
∫C6+C8=∫−11√1+x1−xdx(2−x)x=−I
C∞: z=Reiθ ∫C∞f(z)dz=O(1/R)→0.
이 결과를 모두 정리하면,
I=Pr∫1−1√1+x1−xdx(2−x)x=√32π.

'Mathematics' 카테고리의 다른 글
Integration along a branch cut-014 (0) | 2022.01.03 |
---|---|
Integration along a branch cut-013 (0) | 2021.12.22 |
Integration along a branch cut-011 (0) | 2021.01.04 |
Integration along a branch cut-010 (0) | 2021.01.04 |
Integration along a branch cut-009 (0) | 2021.01.03 |