설현과 수지의 몸무게는 같다. 설현이 줄을 타고 위로 가속을 한다. 설현은 수지를 따라잡을 수 있을까? 도르래까지 거리가 충분히 있다고 생각하라.

1. 도르래의 회전관성을 무시할 수 있을 때

2. 도르래의 회전관성을 무시할 수 없을 때(줄은 도르래에서 미끄러지지 않는다)

로 나누어서 생각한다.

https://kipl.tistory.com/148

 

원숭이와 바나나

도르래에 걸친 줄의 한쪽 끝에 바나나가 매달려 있고 반대편에는 원숭이가 매달려 있다. 원숭이와 바나나의 무게가 같아 처음에는 둘 다 정지한 상태다. 만약 원숭이가 줄을 당겨 위로 올라가

kipl.tistory.com

 

 
728x90
Posted by helloktk
,

실린더와 속이 찬 공이 언덕에서 미끄러짐이 없이 구를 때, 두 물체를 연결하는 막대에 작용하는 힘은? 단, 두 물체의 반지름과 질량은 같다.

  1. 막대를 늘리려고 한다.
  2. 막대를 압축하려고 한다.
  3. 아무 힘이 작용하지 않는다.
 
 
728x90
Posted by helloktk
,

길이가 $\ell$인 무거운 줄의 양끝을 같은 높이로 고정했더니 그림처럼 아래로 $d$만큼 처지고 고정부위에서 수평과 $\theta=45^\circ$ 만큼 각을 이룬다. 한쪽 고정점에서 구슬이 줄을 타고 미끄러진다. 꼭짓점에 도달했을 때 가속도는 $g$의 몇 배인가? 단, 구슬의 무게 때문에 줄에 추가적인 변형이 생기지는 않는다.

1. $\frac{d}{\ell}$

2. $\frac{2d}{\ell}$

3. $\frac{3d}{\ell}$

4. $\frac{4d}{\ell}$

5. 알 수 없다.

더보기

줄이 만드는 곡선이 catenary라는 사실을 이용하면 쉽다. 중심축을 $x=0$으로 잡으면 줄은 

$$ y = a \cosh(x/a) + c$$

의 형태로 주어진다. $a$는 장력의 수평 성분 $T_0$와 선밀도, 줄의 길이가 결정한다: $a = T_0/ \lambda g$. 또한 꼭짓점에서 곡률 반지름은 $R=a$로 주어진다. (참고: https://kipl.tistory.com/105)

 

줄이 평형상태이므로 고정점에 걸리는 장력이 $T$이면 수직 성분은 줄의 무게를 감당해야 하므로 $ 2T\sin \theta = \lambda \ell g $임을 알 수 있고, 수평 성분은 $T_0 = T\cos \theta = \lambda \ell g \cot (\theta) /2$이다. 따라서 $a  = \ell \cot (\theta) /2$.

꼭짓점에서 내려왔을 때 구슬의 속력은 $v=\sqrt{2gd}$이고, 순간적으로 원운동을 하므로 구심 가속도를 가진다.

$$a_c = \frac{v^2}{R} = \frac{ 2gd}{ \frac{\ell  \cot\theta}{2}}=\frac{4d \tan\theta}{\ell}g$$

그런데, 각도가 $\theta\rightarrow \pi/2$로 되면 가속도가 무한히 커진다. 이는 접히는 꼭지점에서 순간적으로 속도가 반대방향으로 바뀌어야 하므로 생기는 unrealistic 한 결과다.

 

catenary에 의존하지 않고 좀 더 물리적으로 설명하는 방법이 없을까? 당연히 있다.

 

 

 
728x90

'Physics > 역학' 카테고리의 다른 글

회전상태가 어떻게 변할까?  (0) 2022.02.05
Scissor lift  (0) 2022.02.05
포물체 운동에서 최고점의 자취  (1) 2022.01.25
매달린 물체의 가속도는?  (0) 2022.01.24
중력 새총  (0) 2022.01.24
Posted by helloktk
,

$\theta=30^\circ$ 경사진 미끄러운 언덕 위에 바퀴($R$)를 고임목을 이용해서 고정시키려 한다. 고임목의 최소 높이($h$)는 $R$의 몇 배인가?

1. $1$

2. $\frac{\sqrt{3}}{2} \approx0.866  $

3. $\frac{1}{2} $

4. $(1-\frac{\sqrt{3}}{2}) \approx 0.134  $

5. 바퀴 무게에 따라 달라진다.

 

마찰이 있는 경우는 어떻게 달라질까?

728x90
Posted by helloktk
,

drag1.nb
0.02MB

공기 저항이 없을 때 물체를 $v_0$ 속력으로 위로 던지면 최고점에 올라가는데 걸리는 시간과 다시 내려오는데 걸리는 시간은 동일하게 $t_{ff} = v_0/g$로 주어진다. 공기 저항이 있는 경우는 어떻게 될지 구체적으로 계산해보자.

반지름이 $R$인 공 모양의 물체가 속력의 제곱에 비례하는 공기 저항(끌림힘) $D= \frac{1}{2} C\rho_{air} A v^2 \approx  0.2 \rho_{air} \pi R^2 v^2$을 받을 때, 올라가는 동안 운동 방정식은 (물체가 받는 공기의 부력도 고려해야 하지만 여기서는 무시한다. 부력은 $g$을 약간 줄이는 효과를 만든다)

$$  m \frac{dv}{dt} = -mg -\ 0.2   \rho_{air} \pi R^2  v^2, $$

$$ \rightarrow  \quad \frac{dv}{dt} = -g (1 + \gamma^2 v^2) , \quad\quad  \gamma^2 =  0.2 \frac{\pi R^2 \rho_{air} }{mg} .$$

$\gamma$는 내려오는 과정에서 terminal speed의 역수를 의미한다. 시간에 대해 적분을 해서 속도를 구하면,

$$ v(t) = \frac{1}{\gamma} \tan \Big( -\gamma gt + \arctan(\gamma v_0) \Big)$$

최고점에 도달하는데 걸리는 시간은 $v(t_{up})=0$ 에서

$$ t_{up} = \frac{1}{\gamma g} \arctan(\gamma v_0) = \frac{v_0}{g} \Big(1 - \frac{(\gamma v_0)^2}{3}+....\Big) $$

로 주어지므로 공기저항이 없을 때보다 더 짧다. 최고점의 높이는

$$ h_{max} = \int_0^{t_{up}} v(t) dt = \frac{1}{\gamma^2 g} \ln \sqrt{ 1 + (\gamma v_0)^2 } =\frac{v_0^2}{2g} \Big( 1- \frac{(\gamma v_0)^2}{2 }+...\Big)$$

로 주어지므로 역시 공기 저항이 없을 때보다 낮다.

 

다시 내려오는 과정에서 중력과 끌림힘이 반대방향이므로 운동 방정식은

$$ \frac{dv}{dt}= -g (1 -\gamma^2 v^2)$$

로 주어지고, 이를 적분하면 (출발 시간을 $t=0$으로)

$$ v(t) = -\frac{1}{\gamma} \tanh (\gamma g t)$$

이를 다시 적분하면 낙하시간에 따른 높이를 얻을 수 있다: $h(0)=h_{max}$

$$ h(t) = \frac{1}{\gamma^2 g} \ln \frac{ \sqrt{ 1+ (\gamma v_0)^2 } }{ \cosh( \gamma gt)}$$

따라서 바닥에 떨어지는데 걸리는 시간 $t_{dn}$은: $ h(t_{dn}) = 0$

$$t_{dn} = \frac{1}{\gamma g}\text{arccosh}\sqrt{1+(\gamma v_0)^2} =\frac{1}{\gamma g} \ln \left(\gamma v_0 + \sqrt{1+ (\gamma v_0)^2 } \right) = \frac{v_0}{g}\Big( 1  -  \frac{ (\gamma v_0)^2 }{6}+...\Big)$$

 

두 시간을 비교해보면 위로 던져진 물체가 최고점에 올라가는데 걸리는 시간보다 다시 내려오는데 걸리는 시간이 더 길다는 것을 볼 수 있다:

$$ {t_{dn} - t_{up}} \approx  \frac{(\gamma v_0)^2}{6} t_{ff}$$

 

$v_0 =10\text{m/s}$로 ($\rightarrow t_{ff} = 1.02\text{s}$, $v_{terminal} \approx 36.6\text{m/s}$) 야구공을 공중으로 던지는 경우를 예로 들면, 차이는 대략 0.013초 정도로 계산된다. 던지는 속력이 종단속력에 가깝거나 더 크면 근사식을 사용할 수 없고 정확한 계산식을 이용해야 한다.

 

$v_0 = 40\text{m/s}$, $1/\gamma=36.6 \text{m/s}$ 일 때,

728x90
Posted by helloktk
,