12πi∫γ+i∞γ−i∞estds√s2−1=I0(t)12πi∫γ+i∞γ−i∞estds√s2+1=J0(t)

g(z)=ezt√z2−1을 적분하기 위해서 그림과 같이 Browmwich contour를 선택하자. 위상은 −π≤arg(z−1), arg(z+1)≤π
∮g(z)dz=0이므로
I=12πi∫γ+i∞γ−i∞estds√s2−1=−∑k12πi∫Ckeztdz√z2−1
C2에서 z−1=(1−x)eiπ, z+1=(1+x)ei0이므로
∫C2=∫1−1extdx√1−x2eiπ/2=−i∫1−1extdx√1−x2
C4에서 z−1=(1−x)e−iπ, z+1=(1+x)ei0이므로
∫C4=∫−11extdx√1−x2e−iπ/2=−i∫1−1extdx√1−x2
이고 ∫C1=∫C3=0이므로
I=1π∫1−1extdx√1−x2
x=cosθ로 치환하면
I=∫π0etcosθdθ=1π∞∑k=0∫π0(tcosθ)kdθk!=1π[π+π12t22!+π3412t44!+π563412t66!+⋯]=1+t222+t42242+t6224262+⋯=∞∑k=0(t2)2k(k!)2=I0(t)
I0(t)는 modified Bessel function of the first kind and zero order.

Note: L−1[1√s2+1]=J0(t)

−π2≤arg(z+i), arg(z−i)≤3π2
residue 정리에 의해서
I=12πi∫γ+i∞γ−i∞estds√s2+1=−∑k12πi∫Ckeztdz√z2+1
C2에서 z−i=(1−y)e−iπ/2, z+i=(1+y)eπ/2이므로
∫C2=∫−11eiyt(idy)√1−y2=−i∫1−1e−iytdy√1−y2
C4에서 z−i=(1−y)ei3π/2, z+i=(1+y)eiπ/2이므로
∫C4=∫1−1eiyt(idy)√1−y2eiπ=−i∫1−1eiytdy√1−y2
따라서 ∫C2+C4=−2i∫2−1cos(yt)dy√1−y2
I=1π∫1−1cos(yt)dy√1−y2=1π∫π−πcos(tsinθ)dθ=J0(t)
J0(t)는 Bessel function of the first kind and zero order.

'Mathematics' 카테고리의 다른 글
Integration along a branch cut-031 (0) | 2024.11.06 |
---|---|
Integration along a branch cut-030 (0) | 2024.11.02 |
Integration along a branch cut-029 (0) | 2024.10.28 |
Fourier transform inversion using a contour integral (0) | 2024.10.26 |
Inverse Laplace Transform을 이용한 무한 LC Ladder Circuit에서 Step Respose (0) | 2024.10.24 |