Eigenface (2)

Image Recognition 2009. 12. 28. 23:55

특정한 eigenface를 평균 얼굴에 적당한 가중치를 주어서 더하면 그 eigenface가 얼굴에 어떤 변화를 주는지를 알아볼 수 있다. 아래의 결과는 가장 큰 eigenvalue를 갖는 6개의 eigenface들에 대해서

-2 * sqrt(eigenvalue) <=  가중치 <= +2 * sqrt(eigenvalue)

사이의 가중치값을 17단계로 변화시키면서 영상의 변화를 본 것이다.

얼굴영상 = 평균 얼굴 + 가중치 * eigenface

일반적인 얼굴영상은 여러 eigenface들의 가중치를 준 조합으로 만들어진다.

아래의 사진을 보면 처음 3개의  eigenface는 영상에서 조명의 변화를 주로 나타내고, 이후의 3개는 얼굴형의 변화를 주로 표현한다. 실제로 eigenface를 사용할 때는 처음 몇 개의 큰 고유치를 갖는 eigenface를 버리고 사용하여서 조명 변화에 따른 영상의 변화를 일정 정도 보상할 수 있다.
Y.Moses, Y.Adini, S.Ullman, "Face Recognition: The Problem of Compensating for changes in Illumination Direction", 1994


 

 
 
 
 



728x90

'Image Recognition' 카테고리의 다른 글

Isometric Transformation  (0) 2010.01.11
Active Shape Model (3)  (0) 2009.12.30
Active Shape Model (ASM)  (2) 2009.12.25
Similarity Transformation  (1) 2009.12.14
Eigenface  (0) 2009.12.12
Posted by helloktk
,

영상에 물체의 윤곽을 찾고자 할 때 active snake 알고리즘을 많이 이용한다. 이것은 물체의 윤곽에서 명암의 차이를 이용하여 윤곽선을 탄성이 있는 곡선으로 근사 시키는 방법이다. 그러나 실제의 영상에는 조명의 영향이나 잡음 아니면 다른 물체에의 한 가려짐으로 인해서 윤곽이 명확하게 나타나지 않거나 가려져서 윤곽선을 제대로 찾지 못하거나 심하게 왜곡된 윤곽선을 낳는 결과를 초래한다. 영상에서 윤곽선을 찾는 경우에 특정한 물체(예를 들면 영상에서 얼굴 윤곽, 손 모양, 초음파 사진에서 장기의 모양...)를 대상으로 하는 경우가 많다. 이 경우 대상 물체의 대략의 형태가 알려져 있고, 실제로 사진에 나타나는 형태는 평균적인 형태에서 많이 벗어난 있지 않는다. 이러한 정보를 이용하면 보다 쉽게 물체의 윤곽선을 찾을 수 있다.

먼저 찾고자 하는 물체의 윤곽 정보를 훈련을 시켜 평균 윤곽선과 평균 윤곽선에서 벗어남을 기술하는 독립적인 mode(=eigen mode=eigen shape)를 알아낸다. 이것은 얼굴인식에서 PCA 기법을 이용하여서 평균 얼굴영상에서 변화를 주는 eigen modeeigenface를 찾는 기법과 같다. Eigen mode는 평균 윤곽선에서 아주 미세한 변화는 버리고, 큰 것만 취하면 된다

이러한 eigen mode용하면 잡음이나 조명 가려짐 등에 의해 잘못 찾은 윤곽선을 보정하여서 원하는 형태를 유지할 수 있다. , 영상처리에 의해서 찾은 윤곽선을 eigen mode로 분해하면 각 eigen mode의 가중치를 구할 수 있는데, 이렇게 구한 가중치를 준 eigen mode평균 윤곽선에 더해서 윤곽선을 재구성한다. 이 재구성된 윤곽선은 잡음이나 가려짐 등의 영향으로 인한 미세한 왜곡을 없앨 수 있다. 그리고, 윤곽선 찾기를 반복적인 과정으로 구현할 때 이 재구성된 윤곽에서 출발하여 다음번의 윤곽선 찾기를 시도한다그러나 이 방법은 eigen mode가 훈련에 사용한 영상에 많이 의존하므로, 훈련된 윤곽과 많이 다른 윤곽은 제대로 대처하지 못한다.

아래 그림(검정선)은 영상처리에서 찾은 손 윤곽선으로 잡음으로 인해서 왜곡이 많이 되어 있는 모양이다. 빨간 선은 eigen mode를 이용해서 재구성한 윤곽선이다.

* 18개의 훈련용 손 모양을 가지고 얻은 12개의 eigen mode을 씀.
* data 출처: http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/hand_data.html

 

 

728x90

'Image Recognition' 카테고리의 다른 글

Active Shape Model (3)  (0) 2009.12.30
Eigenface (2)  (0) 2009.12.28
Similarity Transformation  (1) 2009.12.14
Eigenface  (0) 2009.12.12
Retinex 알고리즘 관련 자료  (1) 2009.04.29
Posted by helloktk
,

2차원 이미지의 기하학적인 변형 중에서 평행이동, 회전 및 전체적인 크기의 변화를 주는 변환이 similarity transformation이다. 이 변환은 두 직선이 이루는 각을 보존하고 길이 비를 유지한다. 따라서 similarity 변환 후 물체의 모양은 변환 전과 같은 형태를 가진다. 이 변환보다도 더 일반적인 2차원의 기하학적인 변환은 affine transformation이다. Affine 변환은 한쪽 방향으로의 밀림(sheer)도 허용한다. 평행한 두 직선은 affine 변환 후에도 여전히 평행하다.

Hierarchy of 2d transformation

 

Similarity transformation은 전체적인 크기를 바꾸는 scale parameter($s$) 1개와 회전각($θ$) 1개, 그리고 $x, y$축으로의 평행이동을 나타내는 parameter ($t_x$, $t_y$) 2 개를 합해서 총 4개가 있어야 한다. 이 parameter에 의해서 원본 이미지의 픽셀 $(x, y)$가 변환된 이미지의 픽셀 $(u, v)$에 대응한다고 하면, 이들 간의 관계는 다음식으로 주어진다. $$u =  s\cos (θ) x - s \sin (θ) y + t_x;$$ $$v =  s \sin (θ) y + s \cos (θ) y + t_y;$$ 따라서 원본 영상의 2점에 대응하는 정보만 주어지면 파라미터 $(s, θ, t_x, t_y)$를 유일하게 결정할 수 있다.     $$(x_1, y_1) \rightarrow  (u_1, v_1),\\ (x_2 , y_2)  \rightarrow (u_2, v_2) $$그러나 많은 경우에는 기준점을 잡는데 에러 등을 고려하여서 일반적으로 원본 영상의 $N(\ge 2)$ 개의 점에 대응하는 정보를 주게 되는데, 이 경우에 변환 관계식은 overdetermined 되어서 해를 구할 수 없는 경우도 있다. 이 경우에는 최소자승법을 써서 변환점과 변환식에 의해서 의해서 주어지는 값의 차이를 최소화시키는 파라미터를 구해서 쓰면 된다.$$L =  \sum_{i} | u_i - (s\cos(θ) x_i - s \sin(θ) y_i + t_x)|^2 + |v_i - (s \sin(θ) x_i + s \cos(θ) y_i + t_y)|^2, \\ (s, \theta, t_x, t_y) =\text {argmin}(L);$$

식을 최소화시키는 파라미터는 $(a= s \cos(θ), b=s \sin(θ)$로 놓으면) $a, b, t_x, t_y$에 대해서 극값을 가질 조건에서 얻을 수 있다. $$\frac {\partial L}{\partial a}=0: \quad \sum_{i} (u_i - (ax_i - by_i + t_x))(-x_i) + (v_i - (bx_i + ay_i + t_y))(-y_i) = 0,\\ \frac {\partial L}{\partial b}=0:\quad \sum _{i} (u_i - (ax_i - by_i + t_x))(y_i) + (v_i - (bx_i + a y_i + t_y))(-x_i) = 0, \\ \frac {\partial L}{\partial t_x}=0: \quad \sum_{i} (u_i - (ax_i - by_i + t_x)) = 0, \\ \frac {\partial L}{\partial t_y}=0: \quad  \sum_{i} (vi - (bx_i + ay_i + t_y)) = 0.$$

따라서, $S_u = \sum_i  u_i$, $S_v = \sum_i v_i$, $S_{ux} = \sum _i  u_i x_ i$, $S_{uy} = \sum _i  u_iy_i$, $S_{vx} = \sum_i  v_i x_i$, $S_{vy} = \sum _i v_i y_i$, $S_x = \sum  x_i$, $S_y=\sum _i y_i$, $S_{xx} = \sum_i  x_i^2$, $S_{xy} = \sum_i x_iy_i$, $S_{yy}=\sum_i y_i^2$라고 하면,$$-S_{ux}  + a   S_{xx} + t_x  S_x - S_{vy} + a S_{yy} + t_y S_y = 0; \\ S_{uy} + b  S_{yy} - t_x  S_y -S_{vx} + b S_{xx}  + t_y S_x = 0;\\ S_u - a S_x + bS_y - t_x  N = 0; \\ S_v - b S_x - aS_y - t_y  N = 0;$$의 4개의 식을 얻으므로 $(a, b, t_x, t_y)$에 대한 1차 연립방정식을 풀면 된다.

$$\left [\begin {array}{cccc} S_x&-S_y&N&0\\S_y &S_x&0&N\\ S_{xx}+S_{yy}&0&S_x&S_y\\0 &S_{xx}+S_{yy}&-S_y&S_x\end {array} \right]\left [\begin {array}{c} a\\b\\t_x\\t_y \end {array}\right]=\left [\begin {array}{c} S_u\\S_v\\S_{ux} +S_{vy}\\S_{vx}-S_{uy}\end {array}\right] \\   \text{or}~~ \mathbf{A}\cdot \mathbf{x} = \mathbf{b}$$ $4\times 4$ 행렬 $\mathbf{A}$의 역행렬은 다음과 같이 쉽게 구해진다. 

$$ \mathbf{A}^{-1} = \frac{1}{S_x^2+S_y^2 -N(S_{xx}+S_{yy})}\begin{bmatrix}  S_x & S_y & -N & 0 \\ -S_y & S_x & 0 & -N \\ -(S_{xx}+S_{yy}) & 0 & S_x & -S_y \\ 0 & -(S_{xx}+S_{yy}) & S_y & S_x  \end{bmatrix} $$

아래의 코드는 이것을 구현한 것이다. 물론, $N=2$개인 경우에는 파라미터는 유일하게 정해지고 이보다도 더 간단한 식으로 주어진다.

// dst = (S|T)(src)
BOOL SimilarTransParams(std::vector<CPoint>& src, std::vector<CPoint>& dst, double ST[4]) {
    double Sx = 0, Sy = 0, Sxx = 0, Syy = 0;
    double Su = 0, Sv = 0, Sxu = 0, Sxv = 0, Syu = 0, Syv = 0;
    for (int i = srcPts.size(); i-->0;) {
        double x = src[i].x, y = src[i].y;
        double u = dst[i].x, v = dst[i].y;
        Sx  += x;        Sy  += y;
        Sxx += (x * x);  Syy += (y * y);
        Su  += u;        Sv  += v;
        Sxu += (x * u);  Syv += (y * v);
    }
    double Z = Sxx + Syy;
    double denorm = Sx * Sx + Sy * Sy - src.size() * Z;
    // det = (denorm)^2;
    if (denorm == 0) return FALSE;
    invA[16] = { Sx, Sy, -src.size(),           0,
                -Sy, Sx,           0, -src.size(),
                -Z,   0,          Sx,         -Sy,
                 0,  -Z,          Sy,          Sx};
    for (int i = 0; i < 16; i++) invA[i] /= denorm;
    //
    double b[4] = {Su, Sv, Sxu + Syv, Sxv - Syu};
    for (int i = 0; i < 4; i++) {
    	double s = 0;
        for (int j = 0; j < 4; j++) 
            s += invA[i * 4 + j] * b[j];
        ST[i] = s;
    }
    return TRUE ;
};

InvertMatrix4x4()는 4x4행렬의 역행렬을 구한다(OpenCV에서)

similarity_trans.nb
0.01MB

더보기
BOOL InvertMatrix4x4_d(double* srcMatr, double* dstMatr) {
    double di = srcMatr[0];
    double d = 1.0 / di;

    dstMatr[0] = d;
    dstMatr[4] = srcMatr[4] * -d;
    dstMatr[8] = srcMatr[8] * -d;
    dstMatr[12] = srcMatr[12] * -d;
    dstMatr[1] = srcMatr[1] * d;
    dstMatr[2] = srcMatr[2] * d;
    dstMatr[3] = srcMatr[3] * d;
    dstMatr[5] = srcMatr[5] + dstMatr[4] * dstMatr[1] * di;
    dstMatr[6] = srcMatr[6] + dstMatr[4] * dstMatr[2] * di;
    dstMatr[7] = srcMatr[7] + dstMatr[4] * dstMatr[3] * di;
    dstMatr[9] = srcMatr[9] + dstMatr[8] * dstMatr[1] * di;
    dstMatr[10] = srcMatr[10] + dstMatr[8] * dstMatr[2] * di;
    dstMatr[11] = srcMatr[11] + dstMatr[8] * dstMatr[3] * di;
    dstMatr[13] = srcMatr[13] + dstMatr[12] * dstMatr[1] * di;
    dstMatr[14] = srcMatr[14] + dstMatr[12] * dstMatr[2] * di;
    dstMatr[15] = srcMatr[15] + dstMatr[12] * dstMatr[3] * di;
    di = dstMatr[5];
    dstMatr[5] = d = 1.0 / di;
    dstMatr[1] *= -d;
    dstMatr[9] *= -d;
    dstMatr[13] *= -d;
    dstMatr[4] *= d;
    dstMatr[6] *= d;
    dstMatr[7] *= d;
    dstMatr[0] += dstMatr[1] * dstMatr[4] * di;
    dstMatr[2] += dstMatr[1] * dstMatr[6] * di;
    dstMatr[3] += dstMatr[1] * dstMatr[7] * di;
    dstMatr[8] += dstMatr[9] * dstMatr[4] * di;
    dstMatr[10] += dstMatr[9] * dstMatr[6] * di;
    dstMatr[11] += dstMatr[9] * dstMatr[7] * di;
    dstMatr[12] += dstMatr[13] * dstMatr[4] * di;
    dstMatr[14] += dstMatr[13] * dstMatr[6] * di;
    dstMatr[15] += dstMatr[13] * dstMatr[7] * di;
    di = dstMatr[10];
    dstMatr[10] = d = 1.0 / di;
    dstMatr[2] *= -d;
    dstMatr[6] *= -d;
    dstMatr[14] *= -d;
    dstMatr[8] *= d;
    dstMatr[9] *= d;
    dstMatr[11] *= d;
    dstMatr[0] += dstMatr[2] * dstMatr[8] * di;
    dstMatr[1] += dstMatr[2] * dstMatr[9] * di;
    dstMatr[3] += dstMatr[2] * dstMatr[11] * di;
    dstMatr[4] += dstMatr[6] * dstMatr[8] * di;
    dstMatr[5] += dstMatr[6] * dstMatr[9] * di;
    dstMatr[7] += dstMatr[6] * dstMatr[11] * di;
    dstMatr[12] += dstMatr[14] * dstMatr[8] * di;
    dstMatr[13] += dstMatr[14] * dstMatr[9] * di;
    dstMatr[15] += dstMatr[14] * dstMatr[11] * di;
    di = dstMatr[15];
    dstMatr[15] = d = 1.0 / di;
    dstMatr[3] *= -d;
    dstMatr[7] *= -d;
    dstMatr[11] *= -d;
    dstMatr[12] *= d;
    dstMatr[13] *= d;
    dstMatr[14] *= d;
    dstMatr[0] += dstMatr[3] * dstMatr[12] * di;
    dstMatr[1] += dstMatr[3] * dstMatr[13] * di;
    dstMatr[2] += dstMatr[3] * dstMatr[14] * di;
    dstMatr[4] += dstMatr[7] * dstMatr[12] * di;
    dstMatr[5] += dstMatr[7] * dstMatr[13] * di;
    dstMatr[6] += dstMatr[7] * dstMatr[14] * di;
    dstMatr[8] += dstMatr[11] * dstMatr[12] * di;
    dstMatr[9] += dstMatr[11] * dstMatr[13] * di;
    dstMatr[10] += dstMatr[11] * dstMatr[14] * di;
    return TRUE;
}

2개의 대응점만 주어진 경우 $(x_1, y_1), (x_2, y_2) \rightarrow (u_1, v_1), (u_2, v_2)$;

bool SimilarTransParams(double x1, double y1, double x2, double y2, 
                        double u1, double v1, double u2, double v2,
                        double ST[4]) {
    double x21 = x2 - x1, y21 = y2 - y1;
    double u21 = u2 - u1, v21 = v2 - v1;
    double det = x21 * x21 + y21 * y21;
    if (det == 0.) return false;
    double a = (x21 * u21 + y21 * v21) / det ;
    double b = (x21 * v21 - y21 * u21) / det ;
    double tx = u1 - a * x1 + b * y1;
    double ty = v1 - b * x1 - a * y1;
    ST[0] = a; ST[1] = b; ST[2] = tx; ST[3] = ty;
    return true;
};


얼굴인식용 training data set을 만들기 위해서 얼굴을 정렬시키는 데 사용한 예:
- 양 눈의 위치 변환: (70,93), (114, 84) --> (30,45), (100,45)로 변환( linear interpolation사용)
- 실제로 사용되는 변환은 정해진 dst영역으로 매핑하는 src영역을 찾아야 하므로, 역변환이 필요하다.
- 필요한 역변환은 src와 dst의 역할만 바꾸면 쉽게 구할 수 있다.

원본 얼굴 이미지
변환된 영상

 
 
728x90

'Image Recognition' 카테고리의 다른 글

Eigenface (2)  (0) 2009.12.28
Active Shape Model (ASM)  (2) 2009.12.25
Eigenface  (0) 2009.12.12
Retinex 알고리즘 관련 자료  (1) 2009.04.29
Spline Based Snake  (0) 2008.08.15
Posted by helloktk
,

Eigenface

Image Recognition 2009. 12. 12. 20:03

평균 얼굴:
- 173개의 얼굴 영상(130x150)을 가지고 만든 것이다.
- 얼굴 영상 출처: http://www.cs.colostate.edu/evalfacerec/data.html(두 눈의 위치 정보가 있어서 편리하다)
- 얼굴 영상은 두 눈의 위치가 영상에서 일정한 위치에 있도록 기하학적인 변환(similarity transform)을 수행했다.


Eigenfaces:
- 173개의 영상에서 평균 얼굴을 뺀 후에 Covariance Matrix을 만들었으므로 실제로 eigenvector는 173-1=172차원 hyperplane를 형성. 130x150차원 공간의 subspace)
- 각각의 eigenface는 1로 정규화된 벡터(영상)이나, 이미지로 보이기 위해서 임의로 스케일링한 것이다. 따라서 각각의 eigenface 밝기는 상대적인 값이다.
- 영상은 eigenvalue의 크기 순서대로 69개만 나열한 것이다( 큰 것--> 작은 것. dimensional reduction)


얼굴의 재구성
원본 얼굴($\bf x$):

69개의 eigenface로 재구성된 얼굴: 상관계수=0.9897;

 


훼손된 얼굴(원본):

eigenface을 이용해서 재구성한 얼굴(69개의 eigenface을 이용) : 상관계수=0.8788;

eigenface를 10개에서 69개로 순차적으로 늘리면서 재구성한 결과(animating gif):


Nonface의 재구성:
원본(원숭이)

재구성된 원숭이 얼굴(69개의 eigenface이용)
- 원본과의 상관계수를 구하여서 얼굴인지 아닌지를 판별할 수 있다.: 상관계수=0.7887;

728x90

'Image Recognition' 카테고리의 다른 글

Active Shape Model (ASM)  (2) 2009.12.25
Similarity Transformation  (1) 2009.12.14
Retinex 알고리즘 관련 자료  (1) 2009.04.29
Spline Based Snake  (0) 2008.08.15
Anisotropic Diffusion Filter  (0) 2008.08.11
Posted by helloktk
,