Processing math: 100%

2차원 이미지의 기하학적인 변형 중에서 평행이동, 회전 및 전체적인 크기의 변화를 주는 변환이 similarity transformation이다. 이 변환은 두 직선이 이루는 각을 보존하고 길이 비를 유지한다. 따라서 similarity 변환 후 물체의 모양은 변환 전과 같은 형태를 가진다. 이 변환보다도 더 일반적인 2차원의 기하학적인 변환은 affine transformation이다. Affine 변환은 한쪽 방향으로의 밀림(sheer)도 허용한다. 평행한 두 직선은 affine 변환 후에도 여전히 평행하다.

Hierarchy of 2d transformation

 

Similarity transformation은 전체적인 크기를 바꾸는 scale parameter(s) 1개와 회전각(θ) 1개, 그리고 x,y축으로의 평행이동을 나타내는 parameter (tx, ty) 2 개를 합해서 총 4개가 있어야 한다. 이 parameter에 의해서 원본 이미지의 픽셀 (x,y)가 변환된 이미지의 픽셀 (u,v)에 대응한다고 하면, 이들 간의 관계는 다음식으로 주어진다.

u=scos(θ)xssin(θ)y+tx

v=ssin(θ)y+scos(θ)y+ty

따라서 원본 영상의 2점에 대응하는 정보만 주어지면 파라미터 (s,θ,tx,ty)를 유일하게 결정할 수 있다.

(x1,y1)(u1,v1)

(x2,y2)(u2,v2)

그러나 많은 경우에는 기준점을 잡는데 에러 등을 고려하여서 일반적으로 원본 영상의 N(2) 개의 점에 대응하는 정보를 주게 되는데, 이 경우에 변환 관계식은 overdetermined 되어서 해를 구할 수 없는 경우도 있다. 이 경우에는 최소자승법을 써서 변환점과 변환식에 의해서 의해서 주어지는 값의 차이를 최소화시키는 파라미터를 구해서 쓰면 된다.

L=i[|ui(scos(θ)xissin(θ)yi+tx)|2+|vi(ssin(θ)xi+scos(θ)yi+ty)|2]

(s,θ,tx,ty)=argmin(L)

식을 최소화시키는 파라미터는 (a=scos(θ),b=ssin(θ)로 놓으면) a,b,tx,ty에 대해서 극값을 가질 조건에서 얻을 수 있다. La=0:i(ui(axibyi+tx))(xi)+(vi(bxi+ayi+ty))(yi)=0

Lb=0:i(ui(axibyi+tx))(yi)+(vi(bxi+ayi+ty))(xi)=0

Ltx=0:i(ui(axibyi+tx))=0

Lty=0:i(vi(bxi+ayi+ty))=0.

따라서, Su=iui, Sv=ivi, Sux=iuixi, Suy=iuiyi, Svx=ivixi, Svy=iviyi, Sx=xi, Sy=iyi, Sxx=ix2i, Sxy=ixiyi, Syy=iy2i 라고 하면,

Sux+aSxx+txSxSvy+aSyy+tySy=0

Suy+bSyytxSySvx+bSxx+tySx=0

SuaSx+bSytxN=0

SvbSxaSytyN=0

의 4개의 식을 얻으므로 (a,b,tx,ty)에 대한 1차 연립방정식을 풀면 된다.

[SxSyN0SySx0NSxx+Syy0SxSy0Sxx+SyySySx][abtxty]=[SuSvSux+SvySvxSuy]

or  Ax=b

4×4 행렬 A의 역행렬은 다음과 같이 쉽게 구해진다. 

A1=1S2x+S2yN(Sxx+Syy)[SxSyN0SySx0N(Sxx+Syy)0SxSy0(Sxx+Syy)SySx]

아래의 코드는 이것을 구현한 것이다. 물론, N=2개인 경우에는 파라미터는 유일하게 정해지고 이보다도 더 간단한 식으로 주어진다.

// dst = (S|T)(src)
BOOL SimilarTransParams(std::vector<CPoint>& src, std::vector<CPoint>& dst, double ST[4]) {
    double Sx = 0, Sy = 0, Sxx = 0, Syy = 0;
    double Su = 0, Sv = 0, Sxu = 0, Sxv = 0, Syu = 0, Syv = 0;
    for (int i = srcPts.size(); i-->0;) {
        double x = src[i].x, y = src[i].y;
        double u = dst[i].x, v = dst[i].y;
        Sx  += x;        Sy  += y;
        Sxx += (x * x);  Syy += (y * y);
        Su  += u;        Sv  += v;
        Sxu += (x * u);  Syv += (y * v);
    }
    double Z = Sxx + Syy;
    double denorm = Sx * Sx + Sy * Sy - src.size() * Z;
    // det = (denorm)^2;
    if (denorm == 0) return FALSE;
    invA[16] = { Sx, Sy, -src.size(),           0,
                -Sy, Sx,           0, -src.size(),
                -Z,   0,          Sx,         -Sy,
                 0,  -Z,          Sy,          Sx};
    for (int i = 0; i < 16; i++) invA[i] /= denorm;
    //
    double b[4] = {Su, Sv, Sxu + Syv, Sxv - Syu};
    for (int i = 0; i < 4; i++) {
    	double s = 0;
        for (int j = 0; j < 4; j++) 
            s += invA[i * 4 + j] * b[j];
        ST[i] = s;
    }
    return TRUE ;
};

InvertMatrix4x4()는 4x4행렬의 역행렬을 구한다(OpenCV에서)

similarity_trans.nb
0.01MB

더보기
BOOL InvertMatrix4x4_d(double* srcMatr, double* dstMatr) {
    double di = srcMatr[0];
    double d = 1.0 / di;

    dstMatr[0] = d;
    dstMatr[4] = srcMatr[4] * -d;
    dstMatr[8] = srcMatr[8] * -d;
    dstMatr[12] = srcMatr[12] * -d;
    dstMatr[1] = srcMatr[1] * d;
    dstMatr[2] = srcMatr[2] * d;
    dstMatr[3] = srcMatr[3] * d;
    dstMatr[5] = srcMatr[5] + dstMatr[4] * dstMatr[1] * di;
    dstMatr[6] = srcMatr[6] + dstMatr[4] * dstMatr[2] * di;
    dstMatr[7] = srcMatr[7] + dstMatr[4] * dstMatr[3] * di;
    dstMatr[9] = srcMatr[9] + dstMatr[8] * dstMatr[1] * di;
    dstMatr[10] = srcMatr[10] + dstMatr[8] * dstMatr[2] * di;
    dstMatr[11] = srcMatr[11] + dstMatr[8] * dstMatr[3] * di;
    dstMatr[13] = srcMatr[13] + dstMatr[12] * dstMatr[1] * di;
    dstMatr[14] = srcMatr[14] + dstMatr[12] * dstMatr[2] * di;
    dstMatr[15] = srcMatr[15] + dstMatr[12] * dstMatr[3] * di;
    di = dstMatr[5];
    dstMatr[5] = d = 1.0 / di;
    dstMatr[1] *= -d;
    dstMatr[9] *= -d;
    dstMatr[13] *= -d;
    dstMatr[4] *= d;
    dstMatr[6] *= d;
    dstMatr[7] *= d;
    dstMatr[0] += dstMatr[1] * dstMatr[4] * di;
    dstMatr[2] += dstMatr[1] * dstMatr[6] * di;
    dstMatr[3] += dstMatr[1] * dstMatr[7] * di;
    dstMatr[8] += dstMatr[9] * dstMatr[4] * di;
    dstMatr[10] += dstMatr[9] * dstMatr[6] * di;
    dstMatr[11] += dstMatr[9] * dstMatr[7] * di;
    dstMatr[12] += dstMatr[13] * dstMatr[4] * di;
    dstMatr[14] += dstMatr[13] * dstMatr[6] * di;
    dstMatr[15] += dstMatr[13] * dstMatr[7] * di;
    di = dstMatr[10];
    dstMatr[10] = d = 1.0 / di;
    dstMatr[2] *= -d;
    dstMatr[6] *= -d;
    dstMatr[14] *= -d;
    dstMatr[8] *= d;
    dstMatr[9] *= d;
    dstMatr[11] *= d;
    dstMatr[0] += dstMatr[2] * dstMatr[8] * di;
    dstMatr[1] += dstMatr[2] * dstMatr[9] * di;
    dstMatr[3] += dstMatr[2] * dstMatr[11] * di;
    dstMatr[4] += dstMatr[6] * dstMatr[8] * di;
    dstMatr[5] += dstMatr[6] * dstMatr[9] * di;
    dstMatr[7] += dstMatr[6] * dstMatr[11] * di;
    dstMatr[12] += dstMatr[14] * dstMatr[8] * di;
    dstMatr[13] += dstMatr[14] * dstMatr[9] * di;
    dstMatr[15] += dstMatr[14] * dstMatr[11] * di;
    di = dstMatr[15];
    dstMatr[15] = d = 1.0 / di;
    dstMatr[3] *= -d;
    dstMatr[7] *= -d;
    dstMatr[11] *= -d;
    dstMatr[12] *= d;
    dstMatr[13] *= d;
    dstMatr[14] *= d;
    dstMatr[0] += dstMatr[3] * dstMatr[12] * di;
    dstMatr[1] += dstMatr[3] * dstMatr[13] * di;
    dstMatr[2] += dstMatr[3] * dstMatr[14] * di;
    dstMatr[4] += dstMatr[7] * dstMatr[12] * di;
    dstMatr[5] += dstMatr[7] * dstMatr[13] * di;
    dstMatr[6] += dstMatr[7] * dstMatr[14] * di;
    dstMatr[8] += dstMatr[11] * dstMatr[12] * di;
    dstMatr[9] += dstMatr[11] * dstMatr[13] * di;
    dstMatr[10] += dstMatr[11] * dstMatr[14] * di;
    return TRUE;
}

2개의 대응점만 주어진 경우 (x1,y1),(x2,y2)(u1,v1),(u2,v2);

bool SimilarTransParams(double x1, double y1, double x2, double y2, 
                        double u1, double v1, double u2, double v2,
                        double ST[4]) {
    double x21 = x2 - x1, y21 = y2 - y1;
    double u21 = u2 - u1, v21 = v2 - v1;
    double det = x21 * x21 + y21 * y21;
    if (det == 0.) return false;
    double a = (x21 * u21 + y21 * v21) / det ;
    double b = (x21 * v21 - y21 * u21) / det ;
    double tx = u1 - a * x1 + b * y1;
    double ty = v1 - b * x1 - a * y1;
    ST[0] = a; ST[1] = b; ST[2] = tx; ST[3] = ty;
    return true;
};


얼굴인식용 training data set을 만들기 위해서 얼굴을 정렬시키는 데 사용한 예:
- 양 눈의 위치 변환: (70,93), (114, 84) --> (30,45), (100,45)로 변환( linear interpolation사용)
- 실제로 사용되는 변환은 정해진 dst영역으로 매핑하는 src영역을 찾아야 하므로, 역변환이 필요하다.
- 필요한 역변환은 src와 dst의 역할만 바꾸면 쉽게 구할 수 있다.

원본 얼굴 이미지
변환된 영상

 
 
728x90

'Image Recognition' 카테고리의 다른 글

Eigenface (2)  (0) 2009.12.28
Active Shape Model (ASM)  (2) 2009.12.25
Eigenface  (0) 2009.12.12
Retinex 알고리즘 관련 자료  (1) 2009.04.29
Spline Based Snake  (0) 2008.08.15
,