$$ f(t) = {\cal F}^{-1} \left[ \frac{- i\exp( -\sqrt{1 + \omega^2} )} {\omega \sqrt{1- i \omega }} \right] $$주파수 domain에서 주어진 함수$$F(\omega ) = \frac{-i e^{-\sqrt{1+ \omega^2} } }{\omega \sqrt{1-i \omega}}$$의 역 Fourier transform을 복소평면에서의 경로적분으로 변환을 하자. $t>0$일 때는 $e^{i\omega t}$가 발산하기 않도록 만들기 위해 upper half plane에 놓인 폐경로 $\Gamma(\text{ccw})$을 고려해야 한다. 반대로 $t<0$일 때는 lower half plane의 폐곡선 $\Gamma'(\text{cw})$에서 경로적분을 고려하면 된다. 그리고 $\omega = 0$에서의 singularity는 복소평면에서 $\omega = i\epsilon$만큼 옮긴 후 계산을 하자.(lower half plane으로 옮기면 다른 결과를 얻는다. 어떻게 singularity를 옮기는가는 문제에 주어진 추가적인 조건을 예를 들면 causality 조건등을 만족시키는 방향으로 선택되어야 한다). Branch cut은 그림과 같이 선택한다. 그러면 위상은
$t > 0$일 때 upper half plane에서 정의된 폐경로 $\Gamma$에 대한 경로적분을 고려하자. $\Gamma$가 simple pole $z=i\epsilon$을 포함하므로 residue 정리에 의해서
$$ \oint_\Gamma \frac{- i e^{ i z t -\sqrt{1+ z^2} } dz}{z\sqrt{1 - iz}} = 2 \pi i \times \lim_{\epsilon\to 0}\text{Res}(z=i\epsilon) = \frac{2\pi}{e}$$