$$ \{ {\bf C}_k \} =\text{argmin}(L) \\ L = \sum_{k=0}^{N-1} \left|  {\bf P}_k - \sum_{i=0}^n  b_{i,n} (t_k ) {\bf C} _i   \right|^2 $$

\begin{gather} t_k = d_k / d_{N-1}, \quad d_k = d_{k-1} + | {\bf P}_k -{\bf P}_{k-1}|\end{gather}

$$\text{Bernstein basis polynomial: } b_{i, n} (t)= \begin{pmatrix} n \\i \end{pmatrix} t^{i} (1-t)^{n-i} = \sum_{j=0}^n t^j  M_{ji} $$

$$ M_{ji} = \frac{n!}{(n-j)!} \frac{ (-1)^{j+i}}{ i! (j-i)!} =(-1)^{j+i}  M_{jj} \begin{pmatrix} j\\i  \end{pmatrix} \quad (j\ge i)$$

$$ \text{note: }~M_{jj} = \begin{pmatrix} n\\j \end{pmatrix},\qquad M_{ji}=0\quad (j<i)$$

// calculate binomial coefficients using Pascal's triangle
void binomialCoeffs(int n, double** C) {
    // binomial coefficients
    for (int i = 0; i <= n; i++)
        for (int j = 0; j <= i; j++)
            if (j == 0 || j == i) C[i][j] = 1;
            else                  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
std::vector<double> basisMatrix(int degree) {
    const int n = degree + 1;
    std::vector<double* > C(n);
    std::vector<double> Cbuff(n*n);
    for (int i = n; i-->0;) 
        C[i] = &Cbuff[i * n];
    // C[degree, k]; k=0,..,degree)
    binomialCoeffs(degree, &C[0]);
    // seting the diagonal;
    std::vector<double> M(n * n, 0); // lower triangle; 
    for (int j = 0; j <= degree; j++)
        M[j * n + j] = C[degree][j];
    // compute the remainings;
    for (int i = 0; i <= degree; i++) 
        for (int j = i + 1; j <= degree; j++)
            M[j * n + i] = ((j + i) & 1 ? -1 : 1) * C[j][i] * M[j * n + j];
    return M;
}
728x90

'Computational Geometry' 카테고리의 다른 글

Subdividing a Bezier Curve  (0) 2024.04.18
Derivatives of Bezier Curves  (1) 2024.04.12
Why Cubic Splines?  (9) 2024.03.16
Natural Cubic Spline  (0) 2024.03.11
Approximate Distance Between Ellipse and Point  (0) 2024.03.08
,

주어진 데이터를 잘 피팅하는 직선을 찾기 위해서는 데이터를 이루는 각 점의 $y$ 값과 같은 위치에서 구하려는 직선과의 차이 (residual)의 제곱을 최소화시키는 조건을 사용한다. 그러나 직선의 기울기가 매우 커지는 경우에는  데이터에 들어있는 outlier에 대해서는 그 차이가 매우 커지는 경우가 발생할 수도 있어 올바른 피팅을 방해할 수 있다. 이를 수정하는 간단한 방법 중 하나는 $y$값의 차이를 이용하지 않고 데이터와 직선 간의 최단거리를 이용하는 것이다. 

수평에서 기울어진 각도가 $\theta$이고 원점에서 거리가 $s$인 직선의 방정식은 

$$ x \sin \theta - y \cos \theta + s=0$$

이고, 한 점 $(x_i, y_i)$에서 이 직선까지 거리는

$$ d_i = | \sin \theta y_i - \cos \theta x_i + s|$$

이다. 따라서 주어진 데이터에서 떨어진 거리 제곱의 합이 최소인 직선을 구하기 위해서는 다음을 최소화시키는 $\theta, s$을 구해야 한다. $$ L = \sum_i \big( \sin \theta x_i - \cos \theta y_i +s \big)^2 $$$$ (\theta, s)=\text{argmin}(L)$$

$\theta$와 $s$에 대한 극값 조건에서 

$$\frac{1}{2} \frac{\partial L}{\partial \theta} = \frac{1}{2} \sin 2 \theta \sum_i (x_i^2 - y_i^2) - \cos 2 \theta \sum x_i y_i + s \sin \theta \sum_i x_i + s \cos \theta \sum_i y_i = 0$$

$$ \frac{1}{2}\frac{\partial L}{\partial s}=\cos \theta \sum y_i  - \sin \theta \sum_i x_i - N s=0$$

주어진 데이터의 질량중심계에서 계산을 수행하면 $\sum_i x_i = \sum_i y_i =0$ 이므로 데이터의 2차 모멘트를 $$ A= \sum_i (x_i^2 - y_i^2), \qquad B = \sum_i x_i y_i $$로 놓으면 직선의 파라미터를 결정하는 식은

$$ \frac{1}{2} A \sin 2 \theta   - B \cos 2 \theta = 0  \qquad \to \quad  \tan 2\theta = \frac{2B}{A} \\ s = 0$$

두 번째 식은 직선이 질량중심(질량중심계에서 원점)을 통과함을 의미한다. 첫번째 식을 풀면

$$ \tan \theta = \frac{- A \pm \sqrt{A^2 + (2B)^2 }}{2B}$$

두 해 중에서 극소값 조건을 만족시키는 해가 직선을 결정한다. 그런데

$$ \frac{1}{2}\frac{\partial^2 L}{\partial \theta^2}=  A \cos 2 \theta + 2B \sin 2 \theta = \pm \sqrt{A^2 + (2B)^2}  >0$$

이므로 위쪽 부호로 직선($x\sin \theta = y\cos \theta$)이 정해진다. 질량중심계에서는 원점을 지나지만 원좌표계로 돌아오면 데이터의 질량중심을 통과하도록 평행이동시키면 된다.

$$  \left(-A+ \sqrt{A^2+ (2B)^2} \right)  (x-\bar{x}) = 2B (y - \bar{y})  $$

여기서 주어진 데이터의 질량중심은 원좌표계에서

$$ \bar{x} = \frac{1}{N} \sum_i x_i, \quad \bar{y} = \frac{1}{N} \sum_i y_i$$

이다. 또한 원좌표계에서 $A$와 $B$의 계산은 

$$ A = \sum_i [ (x_i - \bar{x})^2 - (y_i - \bar{y})^2], \qquad B = \sum (x_i  - \bar{x})(y_i - \bar{y})$$

이 결과는 데이터 분포에 PCA를 적용해서 얻은 결과와 동일하다. PCA에서는 공분산 행렬의 고유값이 큰 쪽에 해당하는 고유벡터가 직선의 방향을 결정했다. https://kipl.tistory.com/211.  또한 통계에서는 Deming regression이라고 불린다.

 

PCA Line Fitting

평면 위에 점집합이 주어지고 이들을 잘 기술하는 직선의 방정식을 구해야 할 경우가 많이 발생한다. 이미지의 에지 정보를 이용해 선분을 찾는 경우에 hough transform과 같은 알고리즘을 이용하는

kipl.tistory.com

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Approximate Distance Transform  (0) 2024.06.02
Graph-based Segmentation  (1) 2024.05.26
Cubic Spline Kernel  (1) 2024.03.12
Ellipse Fitting  (0) 2024.03.02
Bilateral Filter  (0) 2024.02.18
,

최소 자승법 문제는 추정치와 실제의 측정치와의 차이를 최소로 만드는 parameter vector를 구하는 것이다.
$$\underset{\mathbf{x}} {\text{argmin}} ~|\mathbf{A}. \mathbf{x} - \mathbf{b}|^2.$$

여기서 design matrix $\mathbf{A}$는 추정에 사용이 된 basis 함수를 각각의 독립변수에서 계산한 값이고, $\mathbf{x}$는 구하고자 하는 parameter vector이며, $\mathbf{b}$는 측정값 vector이다. 예를 들면 주어진 측정값을 $n-1$차의 다항식을 이용하여서 피팅하려고 하는 경우에는 parameter는 다항식의 계수가 되며 $n$-차원의 vector space을 형성하게 되며, $\mathbf{A}$는

$$   A_{ij} = (x_i)^j ,  \quad j=0,..., n-1$$

가 일 것이다. 일반적으로 $A_{ij}$는 $x_i$에서 계산된 basis-함수의 값이 된다. 위의 식을 $\mathbf{x}$에 대해서 미분을 하면 극값을 취하면 최소자승 문제는 아래의 행렬식을 푸는 문제가 된다

$$    (\mathbf{A}^T. \mathbf{A}) .\mathbf{x} =  \mathbf{A}^T.  \mathbf{b}.$$

$\mathbf{A}^T. \mathbf{A}$ 은 $n\times n$ matrix다. 이 행렬이 역행렬을 가지게 되면

$$ \mathbf{x} = (\mathbf{A}^T. \mathbf{A})^{-1} . (\mathbf{A}. \mathbf{b}),$$

를 하여서 원하는 parameter vector를 얻을 수 있다. 그러나 피팅 문제에 따라 행렬 $\mathbf{A}^T. \mathbf{A}$가 매우 singular 해져 역행렬을 구할 수 없게 되는 경우에 종종 생긴다. 예를 들면, 저주파의 신호를 고주파 기저 함수를 이용하여서 최소자승법을 사용하고자 하는 경우 등에 이러한 문제에 부딪히게 된다. 이런 경우에는 직접적으로 $\mathbf{A}^T. \mathbf{A}$의 역행렬을 구하는 방법을 이용할 수 없고

$$   \mathbf{A} .\mathbf{x} =  \mathbf{b}$$

의 식을 $\mathbf{A}$의 SVD(Singular Value Decomposition)를 이용하여서 풀 수가 있다. $\mathbf{A}$를 SVD 하면 $\mathbf{A}_{m\times n}=\mathbf{U}_{m\times n} . \mathbf{w}_{n\times n}. \mathbf{V}_{n\times n}^T $의 형태로 분해할 수 있다. 여기서 $\mathbf{w}=\text{diag}(\underbrace{w_0, w_1,...}_{\text{nonzero}},0,..,0)$로 쓰여지는 대각행렬이다. matrix $\mathbf{U}$와 $\mathbf{V}$의 column vector를 사용하면
$$ \mathbf{A}  =\sum_{w_k \ne 0} w_k \mathbf{u}_k \otimes \mathbf{v}_k^T$$

의 형태로 쓰인다. $\mathbf{u}_k$는 $\mathbf{U}$의 $k$-번째 열벡터이고, $\mathbf{v}_k$는 $\mathbf{V}$의 $k$-번째 열벡터로 각각 orthonormal basis를 형성한다. parameter 벡터를 $\{ \mathbf{v}_k \}$ basis로 전개를 하면 영이 아닌 singularvalue에 해당하는 성분만 가지게 된다. 구체적으로 위의 $\mathbf{A}$ 분해와 $\mathbf{u}_j^T.\mathbf{u}_k=\delta_{jk}$, 그리고 $\sum_k \mathbf{v}_k \otimes \mathbf{v}_k^T= \mathbf{I}_{n\times n}$임을 이용하면,

\begin{gather}  \mathbf{v}_k^T . \mathbf{x} = \mathbf{u}_k^T . \mathbf{b} / w_k, \quad w_k \ne 0, \\                    \mathbf{v}_k^T . \mathbf{x} = 0, \quad w_k = 0, \\  \rightarrow ~~\mathbf{x} = \sum _{w_k \ne 0 } ( \mathbf{u}_k^T . \mathbf{b} / w_k)  \mathbf{ v} _k , \end{gather}

이어서 위의 해를 구할 수 있다. 이 해는 $|\mathbf{A} . \mathbf{x} -  \mathbf{b}|^2$를 최소화한다.

cubic polynomial fitting

int svd(double *A, int m, int n, double* w, double *V); // from cmath libary.
void fit_func(double x, double val[], int n) {          // polynomial fitting sample;
    val[0] = 1;
    for(int i = 1; i < n; ++i)
        val[i] = x * val[i - 1];
}
#define EPSILON 1.E-8
int svd_fit(const double x[], const double y[], const int m, const int n,
            void (*fit_func)(double , double [], int ),
            double params[],
            double *error)
{
    double *A = new double [m * n];
    double *w = new double [n];
    double *V = new double [n * n];
    // evaluate design matrix;
    for (int i = 0; i < m; ++i)
        fit_func(x[i], &A[i * n + 0], n) ;

    svd(A, m, n, w, V);
    // now A becomes U matrix;
    // truncate small singular values;
    double wmax = 0;
    for (int i = 0; i < n; ++i)
        if (w[i] > wmax) wmax = w[i];
    double thresh = wmax * EPSILON;
    for (int i = 0; i < n; ++i)
        if (w[i] < thresh) w[i] = 0;
    
    // back substitution;
    double *tmp = new double [n];
    for (int j = 0; j < n; ++j) {
        double s = 0;
        if (w[j]) {
            for (int i = 0; i < m; ++i)
                s += A[i * n + j] * y[i];
            s /= w[j];
        }
        tmp[j] = s;
    }
    for (int j = 0; j < n; ++j) {
        double s = 0;
        for (int jj = 0; jj < n; ++jj)
            s += V[j * n + jj] * tmp[jj];
        params[j] = s;
    };

    //estimate error;
    *error = 0;
    for (int i = 0; i < m; ++i) {
        fit_func(x[i], &A[i * n + 0], n); //use A as a tmp buffer;
        double sum = 0;
        for (int j = 0; j < n; ++j) sum += params[j] * A[i * n + j] ;
        double err = (y[i] - sum);
        *error += err * err ;
    }
    delete[] A; delete[] w; delete[] V;
    delete[] tmp;
    return 1;
}

 

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Image rotation by FFT  (0) 2022.02.18
FFT를 이용한 영상의 미분  (0) 2022.02.12
Color Histogram Equalization  (4) 2022.02.07
Least Squares Fitting of Ellipses  (0) 2022.01.27
Circle Fitting: Pratt  (0) 2022.01.20
,