원 내부의 점들은 극좌표 $(r, \theta)$를 사용해서 표현할 수 있다

$$ x=r \cos \theta, ~~y = r\sin \theta .$$

그럼 반지름 $r$을 $[0,1]$ 구간에서 균일하게 선택하고, 각 $\theta$는 $[0,2\pi]$ 구간에서 균일하게 선택하면 원내부에서 균일한 분포를 얻을 수 있을까?

 

먼저, 원내부에 균일한 점분포가 있을 때 반지름과 각도의 분포가 어떻게 주어질지 알아보자. 이 경우 반지름 $r$ 안에서 점을 발견할 확률(cdf) $P(r)$은 면적에 비례하므로 

$$ P(r) =\frac{\text{area}(r)}{\text{area}(1)} =  r^2$$ 

이므로 확률밀도함수(pdf)는 $$p(r) = 2r$$

로 주어진다. 즉, 원내부에서 균일한 점분포는 균일한 각분포를 가지지만, $r$ 분포는 $r \rightarrow1$ 쪽으로 편향되게 된다. 이는 균일하게 $r$을 선택하면 위의 극좌표 변환이 만드는 분포는 원의 중심 부분에 더 집중하는 형태를 가지게 됨을 의미한다.

1000개 점

따라서 반대로 균일한 반지름/각 분포를 이용해서 원내부에서 균일한 점분포를 만들려면 $(x, y) \rightarrow (r, \theta)$로 가는 변환의 Jacobian이 상수여야 한다. 위의 결과를 살펴보면

$$ x = \sqrt{r} \cos \theta,~~ y= \sqrt{r} \sin \theta$$

의 변환을 사용해야 Jaconbian이 상수가 됨을 알 수 있다.

$$J = \left| \begin{array}{cc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta}\\ \frac{\partial y}{\partial r}& \frac{\partial y}{\partial \theta} \end{array} \right|= \frac{1}{2}$$

void UniformDist_disk(CDC *pDC) {
    srand(unsigned(time(0)));
    double scale = 100;
    for (int i = 0; i < 1000; i++) {
        double r = double(rand()) / RAND_MAX;
        double ang = 2 * PI * double(rand()) / RAND_MAX;
        double x = scale * sqrt(r) * cos(ang);
        double y = scale * sqrt(r) * sin(ang);
        int xi = int(x + scale + 0.5);
        int yi = int(y + scale + 0.5);
        pDC->Ellipse(xi - 1, yi - 1, xi + 1, yi + 1);
    }
}
728x90

'Mathematics' 카테고리의 다른 글

Catenary: constant stress  (0) 2022.01.29
Catenary: Variational Approach  (0) 2022.01.29
Mean distance between two randomly chosen points in unit square  (0) 2022.01.28
Catenary  (0) 2022.01.14
Integration along a branch cut-013  (0) 2021.12.22
Posted by helloktk
,

randomline.nb
0.01MB

한 변의 길이가 1인 정사각형 내부의 임의의 두 점을 뽑았을 때 길이를 측정할 때 평균적으로 얼마나 될 것으로 예측할 수 있을까? 문제를 해결하기 위해서는 우선 주어진 길이가 특정한 값을 가질 확률밀도함수를 구해야 한다. $x$ 좌표와 $y$ 좌표가 독립적이므로 우선 1 차원인 경우를 구한 후 해결하면 된다. 그리고 거리가 연속적이므로 주어진 거리 $(a)$ 이하일 확률 $P_1(a)$을 구한 후 그것의 미분을 구하면 $(p_1(a)da=dP_1)$ 주어진 거리에 대한 확률밀도함수를 얻을 수 있다. 두 위치 $x_1, x_2$가 선택될 때 거리는 $|x_1 -x_2|$이고, $|x_1 - x_2 | \le a$일 확률은 $x_1, x_2$을 좌표축으로 하는 평면의 정사각형 영역에서 회색 부분의 면적에 비례한다:

$$P_1(|x_1 -x_2|\le a) = 1 - (1-a)^2, \quad  0\le a \le 1$$ 

이므로 두 지점의 거리가 $a$일 확률밀도함수는

$$ p_1(a) = \frac{dP_1}{da} = 2 (1-a) \quad (1-\text{dim})$$

으로 주어진다. 따라서 단위길이의 직선 위에서 선택된 두 점 사이의 평균 거리는

$$ \overline{a} = \int_0^1 2 (1-a) a da  = \frac{1}{3}$$

물론 단순하게 생각하면 두 좌표가 독립적이므로 

$$ \overline{|x_1 - x_2|} = \int_0^1 \int_0^1 |x_1 -x_2| dx_1 dx_2 = \frac{1}{3}$$

임을 확인할 수 있다.

거리의 분산을 구하면 

$$ \sigma^2(a)= \overline{a^2} - (\overline{a})^2 =  \int_0^12 (1-a) a^2 dx - \frac{1}{9}=\frac{1}{18}$$

이다.

 

평면의 경우는 두 독립적인 1차원 분포의 곱으로 주어지므로 $x-$좌표의 차이가 $a_1$이고 $y-$좌표의 차이가 $a_2$일 확률밀도함수는

$$p_2(a_1, a_2) = p_1(a_1 )p_1(a_2) = 4 (1-a_1)(1-a_2)  \quad (2-\text{dim}) $$

으로 주어진다. 그리고 평균 거리는

$$ \overline{\sqrt{a_1^2+a_2^2} } = \int_0^1 \int_0^1 4 (1-a_1)(1-a_2) \sqrt{ a_1^2 + a_2^2 } da_1 da_2\\ =\frac{1}{15} (2 + \sqrt{2} + 5\text{sinh}^{-1}(1)) = 0.521405$$

 

직선과 마찬가지로 평면에서 2점의 4 좌표가 독립적이므로 평균 거리는

$$ \overline{  \sqrt{(x_1 -x_2)^2 +(y_1 -y_2)^2}} = \int_0^1 \int_0^1 \int_0^1\int_0^1 \sqrt{ (x_1-x_2)^2 + (y_1-y_2)^2} dx_1 dx_2 dy_1 dy_2$$

을 계산해서 얻을 수도 있다.

void MeanRandomDist_Square() {
    const int nTrial = 10000000;
    srand(unsigned(time(0)));
    double sum_dist = 0;
    for (int i = 0; i < nTrial; i++) {
        double dx = double(rand()) / RAND_MAX - double(rand()) / RAND_MAX;
        double dy = double(rand()) / RAND_MAX - double(rand()) / RAND_MAX;
        double dist = sqrt(dx * dx + dy * dy);
        sum_dist += dist;
    }
    double mean_dist = sum_dist / nTrial;
    TRACE("mean dist in a square =%f\n", mean_dist);
}

일반적인 $n-$차원인 경우는? 구체적인 계산이 없이도 평균거리는 늘어날 것으로 쉽게 예측할 수 있다. 

728x90

'Mathematics' 카테고리의 다른 글

Catenary: Variational Approach  (0) 2022.01.29
Generate uniformly random points within a circle  (0) 2022.01.29
Catenary  (0) 2022.01.14
Integration along a branch cut-013  (0) 2021.12.22
Integration along a branch cut-012  (0) 2021.01.05
Posted by helloktk
,

Catenary

Mathematics 2022. 1. 14. 10:18

체인이나 줄을 느슨한 상태로 양끝을 고정시킬 때 모양은 포물선처럼 보이지만 실제로는 그렇지 않고 현수선(catenary)라고 불리는 곡선이다. 양끝을 고정시킨 줄을 보자.

늘어진 줄에는 자신의 무게를 지탱하기 위해서 장력이 걸린다. 그런데 중력이 수직방향으로 걸리므로 장력은 줄의 위치에 따라 달라져야 한다.  수평방향은 움직임이 없으므로 장력의 수평 성분은 모두 같아야 하는데, 줄의 가장 아래로 처진 부분의 접선방향이 수평이므로 이 지점에서 장력($T_0$)와 같아야 한다. 줄의 선밀도가 $\lambda$이고, 가장 아래 지점을 기준으로 곡선의 길이를 $s$라고 하자. 현수선의 수평 위치를 $x$, 수직 위치를 $y$로 하면 $y$는 $x$의 함수로 생각할 수 있고, 가장 아랫부분($x=0$으로 잡자)에서 잰 줄의 길이는

$$s =\int\sqrt{dx^2 + dy^2} =  \int_{0}^x \sqrt{1 + (dy/dx)^2} dx$$

로 쓸 수 있다.

그러면 $(x, y)$에서 줄의 장력을 $T$, 접선이 이루는 각도를 $\psi$라면, 힘의 평형 조건에서

\begin{gather} T \cos \psi = T_0 \\ T \sin \psi = \lambda s g . \end{gather}

따라서 접선의 기울기는

$$ \frac{dy}{dx} = \tan \psi = \frac{\lambda gs }{T_0} = \frac{s}{a}= \frac{1}{a} \int_0^{x} { \sqrt{ 1+\Big( \frac{dy}{dx}\Big)^2}} dx, \quad a \equiv \frac{T_0}{\lambda g}$$

이 식은 $y(x)$에 대한 미분-적분 방정식 형태이므로 미분 방정식으로 바꾸기 위해서 한번 더 미분을 하면 

$$ \frac{d^2 y}{dx^2}  = \frac{1}{a} \sqrt{1 + \Big(\frac{dy}{dx}\Big)^2 }.$$

한번 적분하면 ($\frac{dy}{dx} (x=0)=0$)

$$ \frac{dy}{dx}  =\sinh (x/a).$$ 

다시 적분하면 

$$ y = a \cosh( x/a) + C$$

을 얻는 데, 원점을 이동해서 현수선의 가장 아랫부분이 ($0,a$)가 되도록 조정하면 $C=0$이 된다. 현수선은 선밀도와 꼭지점에서의 장력 비 $a$로 모양이 결정된다. 이 값은 한 지점에서 꼭짓점까지 수평거리($x$)와 기울기를 측정하면 결정할 수 있다: 특징 1번. 그리고 $|x| \ll a$일 때

$$y=  a\left[ 1 + \frac{1}{2}\Big(\frac{x}{a}\Big)^2 + \frac{1}{24}\Big( \frac{x}{a}\Big)^4+...\right] $$

이므로 꼭짓점 근방에서는 포물선으로 근사가 가능하다.

몇 가지 특징:

1. 접선의 기울기:  $\tan \psi =\frac{dy}{dx}= \sinh(x/a)$. 

2. 곡선의 길이: $s = a \tan\psi = a \sinh( x/a)$.

3. $y^2 = a^2+ s^2 ~~\rightarrow ~~ y = a\cosh(x/a) = a\sec(\psi)$.

4. 장력: $T = \lambda g \sqrt{a^2 + s^2} =\lambda g \cosh (x/a)= \lambda g y$. 

5. 현수선의 길이($s$)를 매개변수로 선택하면,

$$\frac{dx}{ds} = \frac{1}{ds/dx}= \frac{1}{\sqrt{1 + (dy/dx)^2} }= \frac{a}{\sqrt{a^2 + s^2}},$$

$$ \frac{dy}{ds} = \frac{dy/dx}{ds/dx}=\frac{s}{\sqrt{a^2+s^2}},$$

따라서 $(dx/ds)^2 + (dy/ds)^2 = 1$임을 알 수 있다.

6. $\frac{dx}{d s} = \frac{1}{a}   \cos^2(\psi)\frac{dx}{d\psi} = \cos(\psi) ~~\rightarrow~~ \frac{dx}{d\psi} = a \sec{\psi} $  이므로 $x= a \ln ( \sec(\psi) + \tan(\psi))$

Note: 미분방정식의 유도를 local version으로 바꾸자. 줄의 장력의 $x$의 함수로 볼 수 있고, 그림에서 힘의 평형을 적용하면, 우선 수평방향에 대해서

$$ \sum F_x = T(x+dx) \cos[ \psi(x+dx)] - T(x) \cos [\psi(x)]=0$$ 

이 식은 장력의 수평성분은 어디서나 같음을 의미하므로 이 값을 꼭지점($\psi=0$)의 값 $T_0$로 고정하자.

수직방향에 대해서는

$$ \sum F_y = T(x+dx) \sin[ \psi(x+dx)] - T(x) \sin[\psi(x)] -dm g=0$$

$T(x+dx)$와 $T(x)$을 소거하고 정리하면

$$  \tan  [\psi(x+dx)] -\tan[\psi(x)] = \frac{dm g}{T_0} = \frac{\lambda g}{T_0} \sqrt{dx^2+dy^2}.$$ 

그런데 $dy/dx = \tan(\psi)$이므로 

 $$ \tan[\psi(x+dx)]- \tan[\psi(x)] = dx \frac{d}{dx} \tan(\psi) =    \frac{d^2y}{dx^2 }dx$$

정리되어 현수선 방정식을 얻을 수 있다.

    

728x90
Posted by helloktk
,

$$I=\int_0^\infty \frac{dx}{1+x^4}$$

이 적분을 구하기 위해 $z=0$에 branch point를 가지는 복소함수

$$f(z)=\frac{\log  z }{1+z^4}$$

을 고려하자. Branch point가 $z=0, \infty$이므로 branch cut을 $+x$으로 선택하고 그림과 같은 contour에 대해서 $f(z)$를 적분을 한다.

$f(z)$는 $z=e^{i(2k+1) \pi/4}, ~(k=0,1,2,3)$에 simple pole을 가진다.

$$\oint_{C} f(z) dz = \left( \int_{C_1} + \int_{C_2} + \int_{C_R} + \int_{C_\epsilon} \right) f(z)dz.$$

$C_R$에 대한 적분은 $z=Re^{i\theta}$로 쓰면,

$$ \left| \int_{C_R} f(z) \right| =\left| \int_0^{2\pi} \frac{\log R + i \theta }{ 1 +R^4 e^{i4 \theta} } iR e^{i \theta} d \theta  \right| < (2\pi R) \frac{ \log  R + 2\pi }{R^4 -1} \rightarrow 0, \quad R \rightarrow \infty.$$ 

$C_\epsilon$에 대한 적분은 $z= \epsilon e^{i \theta}$로 쓰면

$$\left|  \int_{C_\epsilon} f(z) dz \right| = \left| \int_{2\pi}^0 \frac{ \log  \epsilon+ i \theta }{ 1+ \epsilon^4 e^{i 4\theta} } i \epsilon e^{i \theta } d \theta \right|  < (2\pi\epsilon) \frac{|\log \epsilon | + 2\pi }{1-\epsilon^4 } \rightarrow 0, \quad \epsilon \rightarrow 0  $$

$C_1$에서 $z=x e^{i0}, x: 0\rightarrow \infty$이고, $C_2$에서 $z= x e^{i 2\pi}, ~x: \infty \rightarrow 0$

$$ \int_{C_1 + C_2} f(z) dz = \int_0^\infty \frac{ \log x }{ 1+ x^4} dx + \int_\infty^0 \frac{\log x + i 2 \pi }{1+ x^4} dx = -i 2\pi \int_0^{\infty} \frac{dx}{1+x^4}.$$

Residue 정리에 의해서 

$$ \oint_{C} f(z)dz = i 2\pi \sum_{k=0}^{3}\text{Res}(z=e^{i (2k+1) \pi/4}) = -i 2\pi \frac{\pi}{2\sqrt{2}}$$

이므로 

$$  I = \int_0^\infty \frac{dx}{1+x^4} = \frac{\pi}{2\sqrt{2}}$$

임을 확인할 수 있다.

아래는 Mathematica를 이용하여 얻은 결과다.

728x90

'Mathematics' 카테고리의 다른 글

Mean distance between two randomly chosen points in unit square  (0) 2022.01.28
Catenary  (0) 2022.01.14
Integration along a branch cut-012  (0) 2021.01.05
Integration along a branch cut-011  (0) 2021.01.04
Integration along a branch cut-010  (0) 2021.01.04
Posted by helloktk
,

$$ I =  \text{Pr}\int_{-1}^1 \sqrt{ \frac{1+x}{1-x}} \frac{1}{(2-x)x} dx$$

복소함수 

$$f(z)=\left(\frac{1+z}{1-z} \right)^{1/2}\frac{1}{(2-z)z}$$

의 contour $\Gamma$에 대한 적분을 고려한다. $z=\pm1$이 branch point이고, $z=0,1$은 simple pole이다. cut line은 그림처럼 잡고, 위상은 $z=\pm 1$에서 $0\rightarrow 2\pi $로 선택한다.

residue 정리에 의해서 

$$ \int_\Gamma f(z) dz = 2i\pi \text{Res}(z=2) = \sqrt{3} \pi $$

$C_1$: $$\int_{C_1} f(z)dz = O(\sqrt{\epsilon}\epsilon)\rightarrow 0$$  

$C_5$: $$\int_{C_5} f(z)dz = O(\sqrt{\epsilon})\rightarrow 0$$  

$C_3$: $z=\epsilon e^{i \theta}~(\theta: \pi \rightarrow 2\pi)$, $z+1= e^{2i\pi}$, $z-1=e^{i\pi}$이므로

$$\int_{C_3} f(z) dz = \frac{e^{i\pi}}{e^{i\pi/2}e^{i\pi/2} } \int_{\pi}^{2\pi} \frac{i \epsilon e^{i\theta}}{2\epsilon e^{i \theta}} d\theta = i \frac{\pi}{2}.$$ 

$C_7$:  $z=e^{i\theta}~(\theta:0 \rightarrow \pi)$, $z+1 =e^{i 0}$, $z-1=e^{i \pi}$이므로

$$\int_{C_7} f(z) dz = \frac{1}{e^{i\pi/2}  e^{i\pi/2}}\int_0^\pi \frac{i\epsilon e^{i \theta}}{2\epsilon e^{i \theta}} d\theta =-i \frac{\pi}{2} $$

$C_2 + C_4$: $z+1= (x+1) e^{2i \pi }~(x: -1 \rightarrow +1)$, $z-1=(1-x)e^{i\pi}$이므로

$$\int_{C_2 + C_7} f(z)dz = \frac{e^{i\pi}}{e^{i\pi/2}e^{i\pi/2}}\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}}\frac{dx}{(2-x)x}=I.$$

$C_6 + C_8$: $z+1= (x+1) e^{i 0}~(x: +1 \rightarrow -1)$, $z-1=(1-x)e^{i\pi}$이므로

$$\int_{C_2 + C_7} f(z)dz = \frac{1}{e^{i\pi/2}  e^{i\pi/2}}\int_{1}^{-1} \sqrt{\frac{1+x}{1-x}}\frac{dx}{(2-x)x}=I.$$

$C_\infty$: $$ \int_{C_\infty} f(z)dz = O( 1/R) \rightarrow0.$$

이 결과를 모두 정리하면,

$$ I =\text{Pr} \int_{-1}^1 \sqrt{\frac{1+x }{1-x}} \frac{dx}{(2-x)x}=\frac{\sqrt{3}}{2}\pi.$$

 

728x90

'Mathematics' 카테고리의 다른 글

Catenary  (0) 2022.01.14
Integration along a branch cut-013  (0) 2021.12.22
Integration along a branch cut-011  (0) 2021.01.04
Integration along a branch cut-010  (0) 2021.01.04
Integration along a branch cut-009  (0) 2021.01.03
Posted by helloktk
,