지문에서 ridge의 방향(orientation)은 gradient에 수직한 방향이다(그런데 벡터인 gradient와는 달리 ridge의 방향은 모호함이 있다. 시계방향 또는 반시계방향으로 90도 회전이 모두 동일한 ridge의 방향이다).  gradient의 방향각이 $\alpha$일 때 수직인 ridge의 방향각은 $\theta =\frac{\pi}{2} + \alpha$로 정의하자. 방향각을 주어진 gradient 성분 $\nabla I = (g_x, g_y)$로 표현하기 위해서

$$ \sin 2\alpha = 2 \sin \alpha \cos \alpha = 2 \frac{g_x}{\sqrt{g_x^2 + g_y^2}}\frac{g_y}{\sqrt{g_x^2 + g_y^2}}$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2\alpha = \frac{g_x^2}{g_x^2 + g_y^2} -\frac{g_y^2}{g_x^2 +g_y^2}$$ 

임을 이용하자. $$\tan 2\alpha = \frac{ 2g_x g_y}{ g_x^2 - g_y^2}$$로 쓸 수 있으므로 ridge의 방향각은

$$ \theta =\frac{\pi}{2} + \frac{1}{2} \arctan \frac{2g_x g_y}{g_x^2 - g_y^2}$$

임을 알 수 있다. $(g_x, g_y) \rightarrow (-g_x, -g_y)$이더라도 ridge의 방향은 동일하므로 $\theta$의 범위는 $0\le \theta < \pi$로 제한된다.

 

이미지의 한 지점에서 ridge의 방향은 그 점을 중심으로 하는 적당한 크기의 윈도 평균값으로 추정한다. gradient 성분은 Sobel 연산자나 Prewitt 연산자를 convolution해서 얻을 수 있다. 따라서 지문 이미지 상의 픽셀 좌표 $(i,j)$에서 ridge의 방향은

$$\theta_{ij} = \frac{\pi}{2} +\frac{1}{2}\arctan \frac{2 G_{xy}}{G_{xx} - G_{yy}}$$

$$ G_{xy} = \sum_{W} \text{gradX}_{ij} \times \text{gradY}_{ij}$$

$$ G_{xx} = \sum_{W} \text{gradX}_{ij} \times \text{gradX}_{ij}$$

$$ G_{yy} = \sum_{W} \text{gradY}_{ij} \times \text{gradY}_{ij}$$

아래 결과는 5x5 크기의 Gaussian filter를 적용한 지문 이미지에 17x17 크기의 윈도를 겹치지 않게 잡아서 평균을 계산한 결과다. $G_{xx}+G_{yy}$가 최대값의 $20\%$보다 작은 영역은 방향을 표시하지 않았다 (red:0~45, yellow:45~90, magenta: 90~135, cyan: 135~180).

int RidgeOrientaion(BYTE *img, int w, int h, int bsz/*17*/, double *omap) {
    const int nn[] = {-w - 1, -w, -w + 1, -1, 0, 1, w - 1, w, w + 1};
    const int sobelX[] = {-1, 0, 1, -2, 0, 2, -1, 0, 1};
    const int sobelY[] = {-1, -2, -1, 0, 0, 0, 1, 2, 1};
    const int xmax = w - 1, ymax = h - 1;
    std::vector<int> gradx(w * h, 0);
    std::vector<int> grady(w * h, 0);
    for (int y = 1, pos = w; y < ymax; y++) {
        pos++; //x = 0;
        for (int x = 1; x < xmax; x++, pos++) {
            int sx = 0, sy = 0; 
            for (int k = 0; k < 9; k++) {
                int v = img[pos + nn[k]];
                sx += sobelX[k] * v;
                sy += sobelY[k] * v;
            }
            gradx[pos] = sx;
            grady[pos] = sy;
        }
        pos++; // x = xmax;
    }
    const int ny = h / bsz;
    const int nx = w / bsz;
    for (int iy = 0; iy < ny; iy++) {
        for (int ix = 0; ix < nx; ix++) {
            int sxy = 0, sxx = 0, syy = 0; 
            int pos = (iy * w + ix) * bsz; //starting position of block(ix, iy)
            int *dx = &gradx[pos];
            int *dy = &grady[pos];
            for (int jj = 0; jj < bsz; jj++) {
                for (int ii = 0; ii < bsz; ii++) {
                    int gx = dx[jj * w + ii];
                    int gy = dy[jj * w + ii];
                    sxy += gx * gy;
                    sxx += gx * gx;
                    syy += gy * gy;
                }
            }
            omap[iy * nx + ix] = 0.5 * (PI + atan2(double(2.0 * sxy), double(sxx - syy)));
        }
    }
    //...identify fingerprint regions and draw orientation map;
    return 1;
}
728x90

'Image Recognition' 카테고리의 다른 글

Edge Preserving Smoothing  (0) 2024.02.14
Watershed Segmentation  (0) 2021.02.27
Contrast Limited Adaptive Histogram Equalization (CLAHE)  (3) 2021.02.15
Fixed-Point Bicubic Interpolation  (1) 2021.01.19
Distance Transform  (0) 2021.01.16
,

더보기
비교: Rosenfeld Algorithm(Graphics Gem IV)

Neighborhood Map;

[0 1 2]

[7 8 3]

[6 5 4]

int Thinning_2pass(BYTE *image, int w, int h) {
    const int xmax = w - 1, ymax = h - 1;
    const int nn[9] = {-w - 1,- w, -w + 1, 1, w + 1, w, w - 1, -1, 0};//clockwise;
    const BYTE FG = 255, BG = 0;
    bool *flag = new bool [w * h];
    int pass = 0, ok = 0;
    int nb[9];
    while (!ok) {
        ok = 1; pass = (pass + 1) % 2;
        for (int i = w * h; i-->0; ) flag[i] = false;
        for (int y = 1, pos = w; y < ymax; y++) {
            pos++;//x=0;
            for (int x = 1; x < xmax; x++, pos++) {
                if (image[pos] == FG) { //fg;
                    // condition 1; 
                    int count = 0;
                    for (int k = 0; k < 8; k++) 
                        if (image[pos + nn[k]] == FG) count++;
                    if (count >= 2 && count <= 6) {
                        for (int k = 0; k < 8; k++) nb[k] = image[pos + nn[k]];
                        nb[8] = nb[0]; //cyclic;
                        // condition 2;
                        int trans = 0;
                        for (int k = 0; k < 8; k++)
                            if (nb[k] == BG && nb[k + 1] == FG) trans++;
                        if (trans == 1) {
                            // condition3: top&&left=bg || bot=bg || right=bg
                            if (pass == 0 && (nb[3] == BG || nb[5] == BG ||	
                                (nb[1] == BG && nb[7] == BG))) {
                                    flag[pos] = true; ok = 0;
                            } else { // condition4: bot&&right=bg || top=bg || left=bg 
                                if (pass == 1 && (nb[1] == BG || nb[7] == BG ||	
                                    (nb[3] == BG && nb[5] == BG))) {
                                        flag[pos] = true; ok = 0;
                                }
                            }
                        }
                    }//(2<=count<=6);
                }
            }//for_x;
            pos++;//x = w - 1 skip;
        } //for_y;
        // remove flaged pixels;
        for (int y = 1, pos = w; y < ymax; y++) {
            pos++;//x = 0;
            for (int x = 1; x < xmax; x++, pos++) 
                if (flag[pos]) image[pos] = BG;
            pos++; //x=w-1;
        }
    }
    delete [] flag;
    return 1;
}
728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Insertion Sort  (0) 2021.02.24
Optimized Median Search  (0) 2021.02.24
Is Power of 2  (0) 2021.02.12
Flood-Fill and Connected Component Labeling  (2) 2021.02.10
Edge and Corner Detection  (0) 2021.01.27
,

이미지 처리 과정에서 미분에 해당하는 그래디언트 필드(gradient field: $g_x$, $g_y$ )를 이용하면 이미지 상의 특징인 corner, edge, ridge 등의 정보를 쉽게 얻을 수 있다. 이미지의 한 지점이 이러한 특징을 가지는 특징점이 되기 위해서는 그래디언트 필드의 값이 그 점 주변에서 (3x3나 5x5정도 크기의 window) 일정한 패턴을 유지해야 한다. 이 패턴을 찾기 위해서 그래디언트 필드에 PCA를 적용해보자. 수평과 수직방향의 그래디언트 field인 $g_x$와 $g_y$ 사이의 covariance 행렬은 다음 식으로 정의된다:

$$ \Sigma = \left [ \begin {array}{cc} < g_x^2 > & < g_x g_y > \\    <g_x g_y> & <g_y^2 > \end {array}\right] =\left [ \begin {array}{cc} s_{xx} & s_{xy} \\ s_{xy} & s_{yy}\end {array}\right];$$

$<...> = \int_{W}(...) dxdy$는 픽셀 윈도에 대한 적분을 의미한다. $\Sigma$의 eigenvalue는 항상 음이 아닌 값을 갖게 되는데 (matrix 자체가 positive semi-definitive), 두 eigenvalue이 $λ_1$, $λ_2$면

$$λ_1 + λ_2 = s_{xx} + s_{yy} \ge 0$$

$$λ_1  λ_2 = s_{xx} s_{yy} - s_{xy}^2 \ge0 $$

을 만족한다 (완전히 상수 이미지를 배제하면 0인 경우는 없다). eigenvalue $λ_1$, $λ_2$는 principal axis 방향으로 그래디언트 필드의 변동(분산)의 크기를 의미한다. edge나 ridge의 경우는 그 점 주변에서 잘 정의된 방향성을 가져야 하고, corner의 경우는 방향성이 없어야 한다. edge나 ridge처럼 일방향성의 그래디언트 특성을 갖거나 corner처럼 방향성이 없는 특성을 서로 구별할 수 있는 measure가 필요한데, $λ_1$과 $λ_2$를 이용하면 차원이 없는 measure을 만들 수 있다. 가장 간단한 차원이 없는 측도(dimensionless measure)는  eigenvalue의 기하평균과 산술평균의 비를 비교하는 것이다.

$$ Q = \frac { {λ_{1} λ_{2}} }{ \left( \frac {λ_{1}+λ_{2}}{2} \right)^2} = 4\frac { s_{xx} s_{yy} - s_{xy}^2}{(s_{xx} + s_{yy})^2};$$

기하평균은 산술평균보다도 항상 작으므로

$$ 0 \le Q \le 1 $$

의 범위를 갖는다. 그리고 $Q$의 complement로

$$P = 1-Q = \frac{(s_{xx}-s_{yy})^2 + 4 s_{xy}^2}{(s_{xx}+s_{yy})^2};$$를 정의할 수 있는 데 $0 \le P \le 1$이다. $Q$와 $P$의 의미는 무엇인가? 자세히 증명을 할 수 있지만 간단히 살펴보면 한 지점에서 $Q \rightarrow 1$이려면 $λ_{1} \approx λ_{2}$이어야 하고, 이는 두 주축이 동등하다는 의미이므로 그 점에서는 방향성이 없는 코너의 특성을 갖게 된다. 반대로 $Q \rightarrow 0$이면 강한 방향성을 갖게 되어서 edge(ridge) 특성을 갖게 된다.

 

실제적인 응용으로는 지문 인식에서 지문 영역을 알아내거나 (이 경우는 상당이 큰 윈도를 사용해야 한다) 또는 이미지 텍스쳐 특성을 파악하기 위해서는 이미지를 작은 블록으로 나누고 그 블록 내의 미분 연산자의 균일성을 파악할 필요가 있는데 이 차원이 없는 측도는 이미지의 상태에 상관없이 좋은 기준을 주게 된다.

 

참고 논문:

Image field categorization and edge/corner detection from gradient covariance
Ando, S.

Pattern Analysis and Machine Intelligence, IEEE Transactions on
Volume 22, Issue 2, Feb 2000 Page(s):179 - 190

 

** 네이버 블로그 이전;

728x90
,