이미지를 이진화시키기 위해서 여러 알고리즘이 사용된다. 그중 이미지 전체에 대해 하나의 임계값으로 이진화시키는 전역 이진화 알고리즘은 간단하고 빠르기 때문에 많이 이용이 된다. 그러나 이미지를 형성할 때 조명 조건이 균일하지 않은 경우에는 전역 이진화는 원하는 결과를 얻기가 힘들다. 이런 경우에는 각각의 픽셀 주위의 그레이 값을 참조하여 임계치를 결정하는 국소적 이진화 방법을 사용한다. 국소적 이진화에서 임계값을 추출하는 간단한 방법은 윈도 내의 평균값을 이용하면 된다. 좀 더 개선된 알고리즘은 평균값($m(x, y)$)을 참조하되, 편차($\sigma(x, y)$)를 한번 더 고려해 주는 것이다. 이렇게 하여 잡은 국소적 임계값은 다음과 같이 표현된다: 

$$T_{(x, y)} = m_{(x, y)} [1+ \text{factor}(\sigma_{(x, y)}-128)]$$

여기서 $128$은 그레이 값이 가질 수 있는 최대 편차를 의미한다. 편차가 $128$이면 단순 평균값으로 취한다는 의미가 된다. 그 외의 경우는 표준편차와 128의 차이(항상 음수다)에 비례하는 값으로 윈도 평균값을 offset 한 값을 임계치로 잡는다. $\text{factor}$는 일반적으로 정해지지 않고, 실험적으로 $[0.2, 0.5]$ 사이의 값이 취해진다. (문서처럼 배경이 흰색인 경우는 $\text{factor} > 0$이지만, 검정 배경에 흰색 글씨를 처리하는 경우는 음수의 값을 취하는 것이 맞다)
 
국소적인 이진화 알고리즘은 매 픽셀마다 윈도를 잡아서 계산해야 하므로 연산 비용이 많이 든다. 충분한 메모리를 갖춘 시스템의 경우에는 적분 이미지(integral image)를 이용하면 윈도 연산에 소요되는 비용을 대폭 줄일 수 있다..

국소적 이진화 알고리즘에서 윈도 크기와 $\text{factor}$를 결정하는 기준은 무엇일까? 이것은 해결하고자 하는 문제의 특성, 예를 들면 스캔된 문서를 이진화시키는 경우에는 윈도에 충분한 글자가 들어 있어야 한다... 등에 많이 의존한다.

void make_int_img12(BYTE *gray, int width, int height, *int intimage, int *intsqimg);

더보기
void make_int_img12(BYTE *gray, int width, int height, *int intimage, int *intsqimg) {
    // first row accumulation;
    intimage[0] = gray[0];
    for (int x = 1; x < width; ++x) {
        int a = gray[x] ;
        intimage[x] = intimage[x - 1] + a;
        intsqimg[x] = intsqimg[x - 1] + a * a;
    }
    for (int y = 1, pos = y * width; y < height; ++y) {
        int linesum = 0, linesqsum = 0 ;
        for (int x = 0; x < width; ++x, ++pos) {
            int a = gray[pos];
            linesum   += a;
            linesqsum += a * a;
            intimage[pos] = intimage[pos - width] + linesum ;
            intsqimg[pos] = intsqimg[pos - width] + linesqsum;
        }
    }
};
#define integral_image(x, y) (intimage[(y) * width + (x)])
#define integral_sqimg(x, y) (intsqimg[(y) * width + (x)])
//
void adap_binariztion(BYTE *gray, int width, int height, 
                      int w       /*window size = 15*/,
                      double k    /*factor           = 0.2*/,
                      BYTE *bimage) {
    int whalf = w >> 1; //half of adaptive window;
    int diff, sqdiff;
    // make integral image && square integral image; 
    // if image is sufficiently large, use int64 or floating point number;
    std::vector<int> intimage(width * height) ;
    std::vector<int> intsqimg(width * height) ;

    //make integral image and its square integral image;
    make_int_img12(gray, width, height, &intimage[0], &intsqimg[0]);  
    //algorithm main;
    for (int j = 0, pos = 0; j < height; j++) {
        for (int i = 0; i < width; i++, pos++) {
            // clip windows 
            int xmin = max(0, i - whalf);
            int ymin = max(0, j - whalf);
            int xmax = min(width - 1, i + whalf);
            int ymax = min(height - 1, j + whalf);
            int area = (xmax - xmin + 1) * (ymax - ymin + 1);
            // calculate window mean and std deviation;
            if (!xmin && !ymin) {     // origin
                diff   = integral_image(xmax, ymax);
                sqdiff = integral_sqimg(xmax, ymax);
            } else if (!xmin && ymin) { // first column
                diff   = integral_image(xmax, ymax) - integral_image(xmax, ymin - 1);
                sqdiff = integral_sqimg(xmax, ymax) - integral_sqimg(xmax, ymin - 1);
            } else if (xmin && !ymin){ // first row
                diff   = integral_image(xmax, ymax) - integral_image(xmin - 1, ymax);
                sqdiff = integral_sqimg(xmax, ymax) - integral_sqimg(xmin - 1, ymax);
            } else{ // rest of the image
                int diagsum    = integral_image(xmax, ymax) + integral_image(xmin - 1, ymin - 1);
                int idiagsum   = integral_image(xmax, ymin - 1) + integral_image(xmin - 1, ymax);
                diff           = diagsum - idiagsum;
                int sqdiagsum  = integral_sqimg(xmax, ymax) + integral_sqimg(xmin - 1, ymin - 1);
                int sqidiagsum = integral_sqimg(xmax, ymin - 1) + integral_sqimg(xmin - 1, ymax);
                sqdiff         = sqdiagsum - sqidiagsum;
            }
            // threshold = window_mean *( 1 + factor * (std_dev/128.-1));
            // 128 = max_allowed_std_deviation in the gray image;
            double mean = double(diff) / area;
            double std  = sqrt((sqdiff - double(diff) * diff / area) / (area - 1));
            double threshold = mean * (1.0 + k * ((std / 128.0) - 1.));
            if (gray[pos] < threshold) bimage[pos] = 0;
            else                       bimage[pos] = 255;
        }
    }   
};

사용자 삽입 이미지

 

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Fant's Resampling  (0) 2008.12.17
Bright Preserving Histogram Equalization with Maximum Entropy  (0) 2008.07.31
Histogram Equalization  (0) 2008.06.22
FFT2D  (0) 2008.06.10
Otsu Algorithm  (6) 2008.05.30
Posted by helloktk
,