In computational geometry, an alpha shape, or α-shape, is a family of piecewise linear simple curves in the Euclidean plane associated with the shape of a finite set of points. https://en.wikipedia.org/wiki/Alpha_shape
class AlphaShape {
double alpha;
std::set<std::pair<int,int>> Border; //pair;
public:
AlphaShape() { }
AlphaShape(CDC *pDC, std::vector<CfPt>& Q, const double radius = 50) {
if (Q.size() < 2) return;
alpha = radius;
const double alphaSq = alpha * alpha;
const double diameter = 2 * alpha;
for (int i = 0; i < Q.size(); ++i) {
const CfPt &p = Q[i];
for (int j = 0; j < i; ++j) {
const CfPt &q = Q[j];
if (q == p) continue;
const double edist = p.Dist(q);
// 두 점의 사잇거리가 지름보다 크면 edge가 안됨;
if (edist > diameter) continue;
// 두 점을 원주에 포함하는 반지름 alpha인 두 원을 찾음;
// note that c1 == c2 if edist == diameter;
double scale = sqrt(alphaSq - (edist/2)*(edist/2));
CfPt n = (q - p) * scale / edist;
CfPt mid = (q + p) / 2;
CfPt c1 = mid + n.Rot90(); // CfPt(mid.x - ny, mid.y + nx);
CfPt c2 = mid - n.Rot90(); // CfPt(mid.x + ny, mid.y - nx);
// alpha shape의 변이 되기 위해서는 두 원 중 하나는
// 다른 점들을 포함하지 않아야 함;
bool c1_empty = true, c2_empty = true;
for (int k = Q.size(); (k-->0) && (c1_empty || c2_empty);) {
if (Q[k] == p|| Q[k]== q) continue; //i==k || j==k?
if (c1.DistSq(Q[k]) < alphaSq) c1_empty = false;
if (c2.DistSq(Q[k]) < alphaSq) c2_empty = false;
}
if (c1_empty || c2_empty) {
if (c1_empty) drawCircle(pDC, c1);
if (c2_empty) drawCircle(pDC, c2);
// draw edge;
drawEdge(pDC, p, q);
//Border.insert(std::make_pair(i,j));
}
}
}
}
void drawEdge(CDC *pDC, const CfPt &p, const CfPt &q) {
CPen pen(PS_SOLID,2,RGB(255,0,255)); //magenta;
CPen *pOld = pDC->SelectObject(&pen);
pDC->MoveTo(p); pDC->LineTo(q);
pDC->SelectObject(pOld);
}
void drawCircle(CDC *pDC, const CfPt &c) {
CPen pen(PS_SOLID, 1, RGB(0,200,200));
CPen *pOld = pDC->SelectObject(&pen);
pDC->SelectObject(GetStockObject(NULL_BRUSH));
pDC->Ellipse(c.x-alpha, c.y-alpha, c.x+alpha, c.y+alpha);
pDC->SelectObject(pOld);
}
std::set<std::pair<int,int>> getBorder() {
return Border;
}
};
728x90
'Computational Geometry' 카테고리의 다른 글
Smoothing Spline (0) | 2024.06.29 |
---|---|
Approximate Convex Hull (0) | 2024.06.29 |
Catmull-Rom Spline (2) (0) | 2024.06.21 |
Minimum Volume Box (0) | 2024.06.16 |
Natural Cubic Spline: revisited (0) | 2024.06.14 |