drag1.nb
0.02MB

공기 저항이 속력에 비례하는 경우는 물체의 궤적은 closed form이 있다. 그러나 저항력이 속력의 제곱에 비례하게 주어지는 경우는 수치적으로 해결해야 한다. 움직이는 방향의 단면적이 $A=\frac{1}{4}\pi D^2$인 물체가 밀도가 $\rho$인 공기 속에서 $\vec{v}$의 속도로 움직일 때 저항력은 

$$ {\vec F}_D = \frac{1}{4} \rho A v \vec{v}=\frac{1}{16}\pi \rho D^2 v\vec{v}=c v \vec{v}$$

로 표현할 수 있다. 따라서 물체의 운동방정식은

$$ m \ddot{\vec r} = m\vec{g}- c v \vec{v},$$

또는 성분으로 쓰면

$$ m \ddot{x} = - c \sqrt{ \dot{x}^2 + \dot{y}^2} \dot{x}, $$

$$m \ddot{y} = -mg - c \sqrt{\dot{x}^2+ \dot{y}^2} \dot{y}$$

로 주어진다. 아래의 mathematica 코드는 구체적인 수치(SI-단위 기준, 발사각 $\theta_0$, 발사속력 $v_0$)를 대입해서 공기저항이 있을 때와 없을 때 물체의 궤적을 보여준다.

공기 저항이 있을 때 (2)

 

공기 저항이 있을 때 (2)

공기 저항이 없을 때 물체를 $v_0$ 속력으로 위로 던지면 최고점에 올라가는데 걸리는 시간과 다시 내려오는데 걸리는 시간은 동일하게 $t_{ff} = v_0/g$로 주어진다. 공기 저항이 있는 경우는 어떻

kipl.tistory.com

728x90

'Physics > 역학' 카테고리의 다른 글

얼마의 힘을 주어야 하는가?  (0) 2022.09.27
실린더의 운동은?  (0) 2022.09.27
Parabola of Safety  (0) 2022.09.16
곡선을 따라 운동하는 물체의 Animation  (0) 2022.09.12
돌리기가 제일 힘든 축은?  (0) 2022.08.17
Posted by helloktk
,