$$ I = \int_{-1}^{1} \frac{(1-x)^{-\alpha}(1+x)^{-1+\alpha} dx} {5+x^2}=\frac{\pi }{\sqrt{30}} \frac{ \sin [ \pi \alpha + (1-2\alpha ) \tan^{-1}(\sqrt{5})]}{\sin (\pi \alpha) } \qquad (0< \alpha <1) $$
$$ f(z) = \frac{(1-z)^{-\alpha}(1+z)^{-1+\alpha}}{5+z^2}$$ 위상은 $$ 0 \le \arg(1-z) \le 2\pi, \quad -\pi \le \arg(1+z) \le \pi$$로 선택할 수 있다. 그리고 $z_\pm=\pm i \sqrt{5}$는 $f(z)$의 simple pole이다.
$C_1$에서 $z-1=(1-x) e^{i \pi}\to 1-z= (1-x) e^{i 2\pi}$, $1+z = (1+x)^{i0},~(x:1\to -1)$이므로
$$ \int_{C_1} f(z) dz = \int_1^{-1} \frac{(1-x)^{-\alpha} e^{-i2\pi\alpha} (1+x)^{-1+\alpha} dx } {5+x^2} = - e^{-i2\pi\alpha } I $$
$C_2$에서는 $z-1= (1-x) e^{i\pi} \to 1-z= (1-x)^{i0}$, $1+z=(1+x)^{i0},~(x:-1\to 1)$이어서
$$ \int_{C_2} f(z) dz = \int_{-1}^{1} \frac{(1-x)^{-\alpha} (1+x)^{-1+\alpha} dx}{5+x^2 } = I$$
따라서
$$\int_{C_1+C_2} f(z) dz = (-e^{-i2\pi\alpha}+1) I = 2i \sin (\pi \alpha ) e^{-i\pi\alpha}I$$ 그리고 $C_\infty$에서는 적분은 0에 수렴한다. $z_+= i\sqrt{5}$에서 residue을 구하기 위해서 $\tan \varphi = \sqrt{5}$로 놓으면
$$ \arg(z_+ -1) = \pi -\varphi ~\to ~\arg(1-z_+) = 2\pi - \varphi \\ ~\arg(1+z_+) = \varphi \\\to~~ -\alpha \arg(1-z_+) -(1-\alpha)\arg(1+z_+) = -[2\pi \alpha + (1-2\alpha)\varphi]$$
이므로 $$ \text{Res}f(i\sqrt{5} ) = \frac{(\sqrt{6})^{-1} e^{-i[2\pi \alpha + (1-2\alpha)\varphi] }}{ i 2\sqrt{5} } = \frac{1}{i2\sqrt{30}} e^{-i[2\pi \alpha + (1-2\alpha)\varphi]} $$
$z_- = -i \sqrt{5}$에서 residue는
$$\arg(z_- - 1) = \pi +\varphi ~\to ~\arg(1-z_-) =\varphi \\ ~\arg(1+z_-) =-\varphi \\ \to~~ -\alpha \arg(1-z_-)-(1-\alpha)\arg(1+z_-) = (1-2\alpha)\varphi$$이어서 $$\text{Res}f(-i\sqrt{5}) = \frac{(\sqrt{6})^{-1} e^{i (1-2\alpha )\varphi} }{-i 2\sqrt{5}}=\frac{1}{-i2 \sqrt{30}} e^{i(1-2\alpha)\varphi}$$
두 residue의 합은
$$ \sum \text{Res}f (z_i) = \frac{-i}{2\sqrt{30}}e^{-i\pi \alpha } \left( e^{-i [\pi\alpha +(1-2\alpha )]\varphi} - e^{i[\pi\alpha+(1-2\alpha)\varphi]} \right)\\ =-\frac{1}{\sqrt{30}} e^{-i\pi\alpha } \sin [\pi \alpha + (1-2\alpha)\varphi]$$
따라서 residue 정리에 의해서
$$ 2i e^{-i\pi \alpha} \sin (\pi \alpha) I = - 2\pi i \times \left(-\frac{1}{\sqrt{30}} e^{-i\pi \alpha }\sin [ \pi \alpha + (1-2\alpha) \varphi] \right) \\\to ~~ I = \frac{\pi }{\sqrt{30}} \frac{ \sin [ \pi \alpha + (1-2\alpha ) \tan^{-1}(\sqrt{5})]}{\sin (\pi \alpha) }$$
'Mathematics' 카테고리의 다른 글
Inverse Laplace Transform as Bromwich Integral-3 (0) | 2024.10.20 |
---|---|
Inverse Laplace Transform as Bromwich Integral-2 (3) | 2024.10.20 |
Integration along a branch cut-027 (0) | 2024.10.15 |
Integration along a branch cut-026 (0) | 2024.10.14 |
Integration along a branch cut-025 (0) | 2024.10.12 |