728x90

주어진 점집합을 포함하는 최소 면적의 rectangle을 찾는 문제는 점집합의 convex hull을 포함하는 rectangle을 찾는 문제와 같다. convex hull의 한 변을 공유하면서 전체를 포함하는 rectangle 중 최소 면적인 것을 찾으면 된다. Rotating Caliper를 쓰면 O(n) step이 요구된다.

void BoundingRect(std::vector<CPoint>& hull, CPoint vtx[4]) {//non-optimal.
    if (hull.size() < 3) return;
    double minArea = DBL_MAX;
    int bIndex = 0, tIndex = 0, lIndex = 0, rIndex = 0;
    for (int j = 0, i = hull.size() - 1; j < hull.size(); i = j++) {
        CPoint &A = hull[i], &B = hull[j];
        CPoint BA = B - A;  // convex hull의 한 기준변;
        CPoint BAnormal = CPoint(-BA.y, BA.x); //(B-A)에 반시계방향으로 수직인 벡터;
        double BAsq = DOT(BA, BA);
        //기준변과 대척점(antipodal point)을 찾는다: BAnormal방향으로 가장 멀리 떨어진 점
        int id = FindAntipodal(BAnormal, hull) ;
        CPoint QA = hull[id] - hull[i];
        //기준변과 대척점을 통과하는 직선과의 사이거리;
        double D1 = fabs(double(DOT(BAnormal, QA))) / sqrt(BAsq);
        //left_side_end_point;//기준변 반대방향으로 가장 멀리 떨어진 꼭지점;
        int id1 = FindAntipodal(-BA, hull);
        //right_side_end_point;//기준변 방향으로 가장 멀리 떨어진 꼭지점;
        int id2 = FindAntipodal(BA, hull);

        ///가장 왼쪽과 가장 오른쪽 꼭지점을 연결하는 선분
        CPoint H = hull[id1] - hull[id2];  
        //기준변 방향으로 정사영하면 두 평행선 사이거리를 줌;
        double D2 = fabs(double(DOT(BA,H))) / sqrt(BAsq);
        double area = D1 * D2; 
        if (area < minArea) {
            minArea = area;
            bIndex = i ;  tIndex = id;
            lIndex = id1; rIndex = id2;
        }
    }
    //directional vector for base_edge;
    CPoint dir = hull[(bIndex + 1) % hull.size()] - hull[bIndex] ; 
    vtx[0] = LineIntersect(hull[bIndex], dir, hull[lIndex]);
    vtx[1] = LineIntersect(hull[tIndex], dir, hull[lIndex]);
    vtx[2] = LineIntersect(hull[tIndex], dir, hull[rIndex]);
    vtx[3] = LineIntersect(hull[bIndex], dir, hull[rIndex]);
}

'Computational Geometry' 카테고리의 다른 글

Jarvis March  (0) 2021.03.26
Approximate Minimum Enclosing Circle  (1) 2021.03.18
Minimum Bounding Rectangle  (0) 2021.03.15
Minimum Enclosing Circle  (0) 2021.03.01
단순 다각형 만들기  (0) 2021.01.25
단순 다각형의 Convex hull  (0) 2021.01.24
Posted by helloktk

댓글을 달아 주세요