이미지 처리 과정에서 미분에 해당하는 그래디언트 필드(gradient field: $g_x$, $g_y$ )를 이용하면 이미지 상의 특징인 corner, edge, ridge 등의 정보를 쉽게 얻을 수 있다. 이미지의 한 지점이 이러한 특징을 가지는 특징점이 되기 위해서는 그래디언트 필드의 값이 그 점 주변에서 (3x3나 5x5정도 크기의 window) 일정한 패턴을 유지해야 한다. 이 패턴을 찾기 위해서 그래디언트 필드에 PCA를 적용해보자. 수평과 수직방향의 그래디언트 field인 $g_x$와 $g_y$ 사이의 covariance 행렬은 다음 식으로 정의된다:

$$ \Sigma = \left [ \begin {array}{cc} < g_x^2 > & < g_x g_y > \\    <g_x g_y> & <g_y^2 > \end {array}\right] =\left [ \begin {array}{cc} s_{xx} & s_{xy} \\ s_{xy} & s_{yy}\end {array}\right];$$

$<...> = \int_{W}(...) dxdy$는 픽셀 윈도에 대한 적분을 의미한다. $\Sigma$의 eigenvalue는 항상 음이 아닌 값을 갖게 되는데 (matrix 자체가 positive semi-definitive), 두 eigenvalue이 $λ_1$, $λ_2$면

$$λ_1 + λ_2 = s_{xx} + s_{yy} \ge 0, \quad \quad    λ_1  λ_2 = s_{xx} s_{yy} - s_{xy}^2 \ge0 $$

을 만족한다 (완전히 상수 이미지를 배제하면 0인 경우는 없다). eigenvalue $λ_1$, $λ_2$는 principal axis 방향으로 그래디언트 필드의 변동(분산)의 크기를 의미한다. edge나 ridge의 경우는 그 점 주변에서 잘 정의된 방향성을 가져야 하고, corner의 경우는 방향성이 없어야 한다. edge나 ridge처럼 일방향성의 그래디언트 특성을 갖거나 corner처럼 방향성이 없는 특성을 서로 구별할 수 있는 measure가 필요한데, $λ_1$과 $λ_2$를 이용하면 차원이 없는 measure을 만들 수 있다. 가장 간단한 차원이 없는 측도(dimensionless measure)는  eigenvalue의 기하평균과 산술평균의 비를 비교하는 것이다.

$$ Q = \frac { {λ_{1} λ_{2}} }{ \left( \frac {λ_{1}+λ_{2}}{2} \right)^2} = 4\frac { s_{xx} s_{yy} - s_{xy}^2}{(s_{xx} + s_{yy})^2};$$

기하평균은 산술평균보다도 항상 작으므로

$$ 0 \le Q \le 1 $$

의 범위를 갖는다. 그리고 $Q$의 complement로

$$P = 1-Q = \frac{(s_{xx}-s_{yy})^2 + 4 s_{xy}^2}{(s_{xx}+s_{yy})^2};$$를 정의할 수 있는 데 $0 \le P \le 1$이다. $Q$와 $P$의 의미는 무엇인가? 자세히 증명을 할 수 있지만 간단히 살펴보면 한 지점에서 $Q \rightarrow 1$이려면 $λ_{1} \approx λ_{2}$이어야 하고, 이는 두 주축이 동등하다는 의미이므로 그 점에서는 방향성이 없는 코너의 특성을 갖게 된다. 반대로 $Q \rightarrow 0$이면 강한 방향성을 갖게 되어서 edge(ridge) 특성을 갖게 된다.

 

실제적인 응용으로는 지문 인식에서 지문 영역을 알아내거나 (이 경우는 상당이 큰 윈도를 사용해야 한다) 또는 이미지 텍스쳐 특성을 파악하기 위해서는 이미지를 작은 블록으로 나누고 그 블록 내의 미분 연산자의 균일성을 파악할 필요가 있는데 이 차원이 없는 측도는 이미지의 상태에 상관없이 좋은 기준을 주게 된다.

 

참고 논문:

Image field categorization and edge/corner detection from gradient covariance
Ando, S.

Pattern Analysis and Machine Intelligence, IEEE Transactions on
Volume 22, Issue 2, Feb 2000 Page(s):179 - 190

 

** 네이버 블로그 이전;

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Is Power of 2  (0) 2021.02.12
Flood-Fill and Connected Component Labeling  (2) 2021.02.10
점증적인 cosine/sine 값 계산  (0) 2020.12.28
Fast Float Sqrt  (0) 2020.12.27
2차원 Gaussian 분포 생성  (0) 2020.12.10
Posted by helloktk
,

평면 위에 점집합이 주어지고 이들을 잘 기술하는 직선의 방정식을 구해야 할 경우가 많이 발생한다. 이미지의 에지 정보를 이용해 선분을 찾는 경우에 hough transform과 같은 알고리즘을 이용하는 할 수도 있지만 수치해석적으로 직접 fitting을 할 수도 있다. 점집합의 데이터를 취합하는 과정은 항상 노이즈에 노출이 되므로 직선 위의 점뿐만 아니라 직선에서 (많이) 벗어난 outlier들이 많이 들어온다. 따라서 line-fitting은 이러한 outlier에 대해서 매우 robust 해야 한다. 데이터 fitting의 경우에 초기에 대략적인 fitting에서 초기 파라미터를 세팅하고, 이것을 이용하여서 점차로 정밀하게 세팅을 해나가는 반복적인 방법을 많이 이용한다. 입력 데이터가 $\{(x_i, y_i)| i=0,..., N-1\}$로 주어지는 경우에 많이 이용하는 최소자승법에서는 각 $x_i$에서 직선상의 $y$ 값과 주어진 $y_i$의 차이(residual)의 제곱을 최소로 하는 직선의 기울기와 $y$ 절편을 찾는다. 그러나 데이터가 $y$축에 평행하게 분포하는 경우를 다루지 못하게 되며, 데이터 점에서 직선까지 거리를 비교하는 것이 아니라 $y$값의 차이만 비교하므로 outlier의 영향을 매우 심하게 받는다.

이러한 문제를 제거 또는 완화하기 위해서는 PCA(principal axis analysis)를 이용할 수 있다. 점들이 선분을 구성하는 경우, 선분 방향으로는 점 위치의 편차가 크지만 수직 방향으로는 편차가 상대적으로 작다. 따라서 평면에서 점 분포에 대한 공분산 행렬 $\tt Cov$의 고윳값과 고유 벡터를 구하면, 큰 고윳값을 갖는 고유 벡터 방향이 선분의 방향이 될 것이다.

$$ {\tt Cov}[\{ (x_i, y_i)\}]=\frac{1}{N} \begin{pmatrix} \sum _i(x_i- \bar{x})^2 & \sum_i (x_i-\bar{x})( y_i-\bar{y}) \\ \sum_ i (x_i-\bar{x})( y_i-\bar{y})  & \sum_i (y_i- \bar{y})^2   \end{pmatrix}$$

잘 피팅이 이루어지려면 두 고윳값의 차이가 커야 한다. 또한 outlier에 robust 한 피팅이 되기 위해서는 각 점에 가중치를 부여해서 공분산 행렬에 기여하는 가중치를 다르게 하는 알고리즘을 구성해야 한다. 처음 방향을 설정할 때는 모든 점에 동일한 가중치를 부여하여 선분의 방향을 구한 후 다음번 계산에서는 직선에서 먼 점이 공분산 행렬에 기여하는 weight를 줄여 주는 식으로 하면 된다. weight는 점과 직선과의 거리에 의존하나 그 형태는 항상 정해진 것이 아니다.

 

// 점에서 직선까지 거리;
double DistanceToLine(CPoint P, double line[4]) {
    // 중심에서 P까지 변위;
	double dx = P.x - line[2], dy = P.y - line[3]; 
    // 직선의 법선으로 정사영 길이 = 직선까지 거리;
    return fabs(-line[1] * dx + line[0] * dy);
}
// PCA-방법에 의한 line-fitting;
double LineFit_PCA(std::vector<CPoint>& P, std::vector<double>& weight, double line[4]) {
    int res = 1;
    // 초기화 시 weight[i] = 1.;
    double sx = 0, sy = 0, sxx = 0, syy = 0, sxy = 0, sw = 0;
    for (int i = P.size(); i-->0;) {
         int x = P[i].x, y = P[i].y;
         double w = weight[i]; 
         sx += w * x; sy += w * y;
         sxx += w * x * x; syy += w * y * y;
         sxy += w * x * y; 
         sw  += w; 
    }
    // variances;
    double vxx = (sxx - sx * sx / sw) / sw;
    double vxy = (sxy - sx * sy / sw) / sw;
    double vyy = (syy - sy * sy / sw) / sw;
    // principal axis의 기울기;
    double theta = atan2(2 * vxy, vxx - vyy) / 2;
    line[0] = cos(theta); line[1] = sin(theta);
    // center of mass (xc, yc);
    line[2] = sx / sw; line[3] = sy / sw;
    // line-eq:: sin(theta) * (x - xc) = cos(theta) * (y - yc);
    // calculate weights w.r.t the new line;
    std::vector<double> dist(P.size());
    double scale = 0;
    for (int i = P.size(); i-->0;) {
        double d = dist[i] = DistanceToLine(P[i], line);
        if (d > scale) scale = d;
    }
    if (scale == 0) scale = 1;
    for (int i = dist.size(); i-->0; ) {
        double d = dist[i] / scale;
        weight[i] = 1 / (1 + d * d / 2);
    }
    return fitError(P, line);
};
void test_main(std::vector<CPoint>& pts, double line_params[4]) {
    // initial weights = all equal weights;
    std::vector<double> weight(pts.size(), 1); 
    while (1) {
       double err = LineFit_PCA(pts, weight, line_params) ;
       //(1) check goodness of line-fitting; if good enough, break loop;
       //(2) re-calculate weight, normalization not required.
     }
};

아래 그림은 weight를 구하는 함수로 $weight= 1 /\sqrt{1+dist\times dist}$를 이용하고, fitting 과정을 반복하여 얻은 결과다. 상당히 많은 outlier가 있음에도 영향을 덜 받는다. 파란 점이 outlier이고, 빨간 직선은 outlier가 없는 경우 fitting 결과고, 파란 선은 outlier까지 포함한 fitting 결과다.

##: 네이버 블로그에서 이전;

 
 
 
 
728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Fast Float Sqrt  (0) 2020.12.27
2차원 Gaussian 분포 생성  (0) 2020.12.10
Histogram Equalization  (0) 2020.11.12
Least Squares Fitting of Circles  (0) 2020.11.11
Integer Sqrt  (0) 2020.11.11
Posted by helloktk
,

서로 다른 조건에서 생성이 된 두 개의 영상을 비교하기 위해서는 먼저 영상을 정규화시키어야 한다. 쉽게 생각할 수 있는 정규화의 방법은 두 개의 영상이 동일한 히스토그램을 같도록 만들면 된다. 어떻게 동일한 히스토그램을 만들 수 있는가? 간단히 생각할 수 있는 방법은 주어진 영상의 히스토그램을 전 픽셀에 걸쳐서 균일한 빈도를 보이는 히스토그램이 되도록 변환을 하는 것이다. 즉, 히스토그램을 평탄화시키는 것이다. 이 변환을 $F(x)$라고 하면, 입력 영상의 픽셀 값 $x$는 새로운 픽셀 값 $y = F(x)$로 바뀐다. 영상의 히스토그램은 픽셀 값의 빈도를 나타내므로 확률 밀도 함수로 해석할 수 있고 (픽셀 값을 연속 변수로 볼 때) 주어진 영상의 확률 밀도 함수를 $P(x)$라고 하자. 그러면 $P(x) dx$는 픽셀 값이 $[x, x+dx]$인 픽셀이 영상에서 나타날 확률을 의미한다. 변환 후에서는 임의의 픽셀 값이 균일해야 하므로 확률 밀도 함수는 상수 $a$이고, 픽셀 값의 구간이 $[0,255]$ 이므로 $a = 1/ 255$로 주어진다. 따라서, 변환이 확률을 보존하기 위해서는 $$P(x) dx = a dy$$을 만족해야 하므로 변환 후 픽셀 값 y와 변환 전 픽셀 값 x사이의 관계를 알 수 있다. $$\frac {dy}{ dx} = \frac {1}{a}  P(x) $$ 이 식을 적분하면, $$y = F(x) = \frac {1}{a} \int_0^x P(x') dx' =  255\times  \text {cumulative sum of } P(x)$$ 즉, 히스토그램을 평탄화시키는 변환은 원래 영상 히스토그램의 누적합을 전체 픽셀 수로 나눈 값, $$k \rightarrow F(k)=255 \times \frac {\sum_{i=0}^{k} H [i]}{ \sum_{i=0}^{255} H [i]}$$으로 결정된다. 영상의 히스토그램은 이산적이기 때문에 실제로 모든 픽셀 값에서 균일하게 나타나지 않지만, 구간 변환은 거의 일정하게 나타난다. 이 변환을 거친 영상의 누적 히스토그램(cumulative histogram)을 $y$-축 픽셀 값을 $x$-축으로 해서 그리면 거의 일직선으로 증가하는 모양을 나타낸다.

이 히스토그램의 평탄화는 픽셀 값이 좁은 영역에 몰려있는 영상을 전 영역에 분포하도록 한다. 인간은 영상의 밝기에 의해서 보다는 밝고 어두움의 변화의 크기에 의해서 인지도가 증가하게 되는데, 평탄화된 영상은 보다 쉽게 인식이 될 수 있는 구조를 가진다.

void histogrm_eq(BYTE *src, int width, int height, BYTE *dst) {
    int hist[256] = {0};
    int cum[256];
    for (int k = width * height; k-- > 0; ) 
        hist[src[k]]++ ;
    cum[0] = hist[0];
    for (int k = 1; k < 256; k++) 
    	cum[k] = hist[k] + cum[k - 1];
    double a = 255. / cum[255];
    for (int k = width * height; k-- > 0; ) {
        int x = int(a * cum[src[k]] + 0.5);
        dst[k] = x > 255 ? 255: x;
    }
}

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

2차원 Gaussian 분포 생성  (0) 2020.12.10
PCA Line Fitting  (0) 2020.11.12
Least Squares Fitting of Circles  (0) 2020.11.11
Integer Sqrt  (0) 2020.11.11
Parabolic Interpolation in Peak Finding  (3) 2020.11.10
Posted by helloktk
,

점집합을 일반적인 2차 곡선으로 피팅하는 경우에 방정식은

$$ a x^2 + by^2 + cxy +d x + ey +f = 0$$

의 계수를 주어진 데이터를 이용하여서 구해야 한다. 실제 문제에서는 타원, 포물선 쌍곡 선등의 타입에 따라 몇 가지 제약 조건을 넣어 피팅을 한다. 원은 타원의 특별한 경우로 일반적으로 $a = b$, $c = 0$의 제약 조건이 필요하다. 그러나 보다 엄밀하게 제약을 하게 되면 $a = b = 1$의 추가 조건을 줄 수 있다. 이 경우는 점들이 모두 일직선에 있는 경우를 ($a = b = 0$) 취급할 수 없게 된다. 이 예외적인 경우를 제외하고는 최소자승법을 사용하면 계수를 매우 쉽게 구할 수 있기 때문에 많이 이용된다.

 

문제: 주어진 데이터를 fitting 하는 이차곡선(원)

$$x^2  + y^2 + A x + B  y + C = 0$$

의 계수 $A, B, C$를 최소자승법을 사용해서 구하라. 

 

주어진 점집합이 원 위의 점이면 우변이 0이 되어야 하나, 실제 데이터를 얻는 과정에서 여러 노이즈에 노출되므로 일반적으로 0이 되지 않는다. 최소자승법은 주어진 점들이 원에서 벗어나는 정도의 제곱 합이 최소가 되도록 하는 계수 $A, B, C$를 결정한다.  원과 점의 편차의 제곱합
$$ L=\sum_ i   \left |x_i^2 + y_i^2 + A x_i + B y_i + C \right|^2 , $$

의 극값을 찾기 위해서 $A, B,$ 그리고 $C$에 대해 미분을 하면

$$\frac{\partial L}{\partial A} = 2 \sum_i (x_i^2 + y_i^2 + A x_i + B y_i + C) x_i = 0, $$

$$\frac{\partial L}{\partial B} = 2 \sum_i (x_i^2 + y_i^2 + A x_i + B y_i + C) y_i = 0, $$

$$\frac{\partial L}{\partial C} = 2 \sum_i (x_i^2 + y_i^2 + A x_i + B y_i + C) = 0. $$

이 연립방정식을 풀면  $A, B, C$를 구할 수 있다. 계산을 단순하게 만들고 수치적 안정성을 높이기 위해 입력점들의 질량중심 

$$ m_x = \frac{1}{N} \sum_i x_i, \quad m_y = \frac{1}{N} \sum_i y_i$$

계에서 계산을 하자. 이를 위해 입력점의 $x$, $y$ 성분에서 각각 $m_x$, $m_y$만큼을 빼준 값을 좌표값으로 대입하면 된다: 

$$ x_i \to x_i - m_x,\quad y_i \to y_i - m_y$$

그러면 질량중심 좌표계에서는 $S_x = \sum_i x_i =0$, $S_y= \sum_i y_i =0$이 된다.

우선 세 번째 식에서 

$$ C = -\frac{S_{x^2} + S_{y^2}}{N} $$

을 얻을 수 있고, 첫번째와 두 번째 식에서는 각각

$$ S_{x^2} A +  S_{xy} B = -  (S_{x^3} + S_{xy^2})  $$

$$ S_{xy}  A  + S_{y^2} B = - (S_{y^3} + S_{x^2 y} )$$

을 얻을 수 있다. 이를 풀면

$$ A = \frac{- S_{y^2} ( S_{x^3} + S_{xy^2}) + S_{xy} (S_{y^3} + S_{x^2y})  }{ S_{x^2} S_{y^2} - S_{xy}^2 } \\ B= \frac{-S_{x^2}(S_{y^3} + S_{x^2 y}) +S_{xy}  (S_{x^3} + S_{xy^2}) }{S_{x^2} S_{y^2}- S_{xy}^2} $$

여기서 주어진 데이터의 각 차수에 해당하는 moment는 아래처럼 계산된다:

추정된 원의 중심 $(c_x, c_y)$는 

$$ c_x = - \frac{A}{2},   \qquad c_y = - \frac{B}{2} $$

로 주어지고, 반지름은 

$$r^2 =  c_x^2 +c_y^2 - C = c_x^2 + c_y^2 + \frac{1}{N}( S_{x^2}+S_{y^2})$$

로 주어진다.

Ref: I. Kasa, A curve fitting procedure and its error analysis. IEEE Trans. Inst. Meas., 25:8-14, 1976

/* 구현 코드: 2024.04.01, typing error 수정 & 질량중심계 계산으로 수정;*/
double circleFit_LS(std::vector<CPoint>& Q, double& cx, double& cy, double& radius) {
    if (Q.size() < 3) return -1;
    double sx2 = 0.0, sy2 = 0.0, sxy  = 0.0;
    double sx3 = 0.0, sy3 = 0.0, sx2y = 0.0, sxy2 = 0.0;
    double mx = 0, my = 0;            /* center of mass;*/
    for (int k = Q.size(); k-->0;)
        mx += Q[k].x, my += Q[k].y;
    mx /= Q.size(); my /= Q.size();
    /* compute moments; */
    for (int k = Q.size(); k-->0;) { /* offset (mx, my)*/
        double x = Q[k].x - mx, xx = x * x;
        double y = Q[k].y - my, yy = y * y;
        sx2  += xx;      sy2  += yy;      sxy  += x * y;
        sx3  += x * xx;  sy3  += y * yy;
        sx2y += xx * y;  sxy2 += yy * x;
    }
    double det = sx2 * sy2 - sxy * sxy;
    if (fabs(det) < 1.e-10) return -1;    /*collinear한 경우임;*/
    /* center in cm frame; */
    double a = sx3 + sxy2;
    double b = sy3 + sx2y;
    cx = (sy2 * a - sxy * b) / det / 2;
    cy = (sx2 * b - sxy * a) / det / 2;
    /* radius squared */
    double radsq = cx * cx + cy * cy + (sx2 + sy2) / Q.size();
    radius = sqrt(radsq);
    cx += mx; cy += my; /* recover offset; */
    return fitError(Q, cx, cy, radius);
}

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

PCA Line Fitting  (0) 2020.11.12
Histogram Equalization  (0) 2020.11.12
Integer Sqrt  (0) 2020.11.11
Parabolic Interpolation in Peak Finding  (3) 2020.11.10
Histogram Matching  (0) 2012.11.03
Posted by helloktk
,

히스토그램처럼 균일한 간격으로 주어진 데이터에서 피크 값의 위치를 찾기 위해서는 먼저 노이즈 제거를 위해 몇 번의 smoothing 과정을 적용해야 한다 (구체적인 방법은 필요에 따라 다양하다). smoothing 과정을 거친 히스토그램에서 피크 위치를 찾는 것은 쉬운 작업이다. 그런데 경우에 따라 그 위치를 sub-order까지 구해야 필요가 생긴다. 예를 들면, 실수 값 데이터 시퀀스 대한 히스토그램을 만들려면 먼저 정수로 양자화시켜야 가능하다. 이 양자화된 정보를 담고 있는 히스토그램에서 피크의 위치를 찾으려 할 때 양자화 과정에서 잃어버린 정밀도를 복원하려면 interpolation을 써야 한다. 간단하게 parabolic 근사로 피크의 위치를 찾는 경우를 생각하자. 이 방법은 수학적으로 단순하지만 영상처리 알고리즘에서 많이 이용이 되고 있다. 데이터 시퀀스가 균일한 간격에서 주어졌으므로 계산은 $-1, 0, 1$의 세 군데 위치에서 중앙 근방에 피크가 나타나는지를 고려하면 된다. 세 점에서 히스토그램 값이 각각 $h_m, h_0, h_p$일 때 이들을 지나는 이차 곡선의 피크 위치를 찾자. 주어진 이차 곡선을

$$y = a  (x - c)^2 + b$$

꼴로 쓰면 $c$가 0에서 벗어난 정도를 나타낸다.

$$(-1, h_m) \quad \rightarrow \quad h_m = a(-1-c)^2 +b; \\(0, h_0) \quad \rightarrow \quad h_0 = a c^2 +b; \\ (+1, h_p) \quad \rightarrow \quad h_m = a(+1-c)^2 +b; $$ 이므로 $$h_m - h_p = 4ac, \\ h_m + h_p -2 h_0=2 a,\\ \therefore ~c = \frac { h_m - h_p}{2(h_m + h_p -2 h_0 )}$$

아래 코드는 피크의 위치가 중앙점에서 벗어난 정도를 준다.

bool parabolicInterpolate(double hm, double h0, double hp, double *c) {
      double a = hm + hp - 2 * h0;
      if (a >= 0) return false; // not a parabola(a==0), not convex up(a>0);
      *c = 0.5 * (hm - hp) / a;
      if (*c < -0.5 || *c > 0.5) return false; //  too far;
      return true;
}
728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Least Squares Fitting of Circles  (0) 2020.11.11
Integer Sqrt  (0) 2020.11.11
Histogram Matching  (0) 2012.11.03
삼각형의 외접원: 외접원의 중심 2  (9) 2012.10.20
삼각형의 외접원: 외접원의 중심  (0) 2012.10.19
Posted by helloktk
,