반지름이 $R$인 구형 축전기가 있다. 다른 물체와 충돌로 인해 표면의 일부가 안으로 찌그러져 버렸다. 찌그러져 패인 부분의 부피가 이전의 1% 정도 일때 축전기 용량은 어떻게 변할까?
- 1% 증가
- 1% 감소
- 0.5% 증가
- 0.5% 감소
- 0.333% 증가
- 0.333% 감소
풀이: 반지름 $R$인 구형 축전기의 전기용량은 $C=4\pi \epsilon_0 R$로 주어진다. 전하 $Q$로 충전된 축전기에 저장된 전기에너지가 $U= \frac{Q^2}{2C}$이다. 전하를 일정하게 유지하면서 전기용량이 변하면 $\Delta U= - \frac{Q^2}{2C}\frac{\Delta C}{C}$이므로 전기용량이 감소하면 저장된 에너지가 증가한다. 구형 축전기 내부에는 전기장이 없지만 외부에는 전기장이 형성되어 있으므로, 내부로 찌그러지면 전기장이 있는 영역이 증가하므로 축전기가 저장한 에너지가 증가하게 된다 (찌그린 외력이 일부 에너지를 제공했음). 구형 축전기의 패인 부분이 작으면 그 부분에서 전기장은 표면에서 전기장으로 근사를 할 수 있다. 표면에서 전기장이 $E_\text{surface} = \frac{1}{4\pi\epsilon_0} \frac{Q}{R ^2}$로 주어진다. 그러면 찌그러진 부분에 저장된 에너지는 $$ \Delta U \approx \left( \frac{1}{2}\epsilon_0E^2_\text{surface} \right) \times \left( \frac{4}{3}\pi R^3 \right)\times \frac{1}{100}$$
로 근사되므로
$$ \frac{\Delta C}{C} = -\frac{1}{300}$$
임을 확인할 수 있다.
'Physics > 정전기' 카테고리의 다른 글
도체구각의 전위는? (26) | 2023.11.24 |
---|---|
전하가 충전되지 않는 축전기는? (0) | 2023.11.22 |
구각 내 전기장은 변하는가? (25) | 2023.11.21 |
대전된 구면의 일부분이 만드는 전기장의 비교 (0) | 2023.11.16 |
구멍 중심에서 전기장은 (0) | 2023.11.16 |