Statistical region merging은 이미지의 픽셀을 일정한 기준에 따라 더 큰 영역으로 합병하는 bottom-up 방식의 과정이다. 두 영역 R1R1R2R2가 하나의 영역으로 합병이 되기 위해서는 두 영역의 평균 픽셀 값의 차이가 

gln(2/δ)2Q(1|R1|+1|R2|)gln(2/δ)2Q(1|R1|+1|R2|)

를 넘지 않아야 한다. g=256g=256으로  gray 레벨의 갯수를 의미하고, |Ri||Ri|RiRi 영역에 포함된 픽셀 수를 나타낸다. δδ는 작은 수로 이미지의 픽셀 수의 제곱에 반비례한다. 보통 δ=1/(6×width×height)2δ=1/(6×width×height)2로 선택한다. QQ는 이미지의 통계적인 복잡성을 정량화하는 양으로 이 알고리즘에서는 외부에서 설정이 되는 값이다. 낮은 QQ값을 선택하면 분할된 영역의 수가 작아지고(undersegmentation), 반대로 높은 QQ 값을 입력하면 분할된 영상에 너무 많은 영역이 나타나게 된다(oversegmentation).

Ref:

https://en.wikipedia.org/wiki/Statistical_region_merging

http://www.lix.polytechnique.fr/~nielsen/Srmjava.java

 

Srm::Srm(int width, int height, BYTE *image) {
    this->width  = width;
    this->height = height;
    int n        = width * height;
    this->count = new int [n];
    this->Ravg  = new float [n];
    this->Gavg  = new float [n];
    this->Bavg  = new float [n];
    this->image = image;
    // disjoint sets with n pixels;
    this->UF = new Universe(n);
    // initialize to each pixel a leaf region;
    for (int i = 0, pos = 0; i < n; i++, pos += 3) {
        count[i] = 1;
        Bavg[i] = image[pos    ];
        Gavg[i] = image[pos + 1];
        Ravg[i] = image[pos + 2];
    }
    this->Q = 32;		// adjustable.					    
    this->g = 256.0;
    this->logDelta = 2. * log(6.0 * n);
}
bool Srm::Predicate(int rgn1, int rgn2) {
    double dR = (Ravg[rgn1] - Ravg[rgn2]); dR *= dR;
    double dG = (Gavg[rgn1] - Gavg[rgn2]); dG *= dG;
    double dB = (Bavg[rgn1] - Bavg[rgn2]); dB *= dB;
    double logreg1 = min(g, count[rgn1]) * log(1.0 + count[rgn1]);
    double logreg2 = min(g, count[rgn2]) * log(1.0 + count[rgn2]);
    double factor = g * g / (2.0 * Q);
    double dev1 = factor * (logreg1 + logDelta) / count[rgn1] ;
    double dev2 = factor * (logreg2 + logDelta) / count[rgn2] ;
    double dev = dev1 + dev2;
    return ( (dR < dev) && (dG < dev) && (dB < dev) );
}
void Srm::Merge(int rgn1, int rgn2) {
    if (rgn1 == root2) return;
    int w1 = count[rgn1], w2 = count[rgn2];
    int root = UF->Union(rgn1, rgn2);
    //update the merged region;
    count[root] = w1 + w2;
    double count_sum = w1 + w2;
    Ravg[root] = (w1 * Ravg[rgn1] + w2 * Ravg[rgn2]) / count_sum;
    Gavg[root] = (w1 * Gavg[rgn1] + w2 * Gavg[rgn2]) / count_sum;
    Bavg[root] = (w1 * Bavg[rgn1] + w2 * Bavg[rgn2]) / count_sum;
}
Edge* Srm::Pairs(int nedge) {
    // 4-connectivity;
    int ymax = height - 1, xmax = width - 1;
    Edge* edgeList = new Edge[nedge];
    int cnt = 0;
    for (int y = 0; y < ymax; y++) {
        for (int x = 0; x < xmax; x++) {
            int pos = y * width + x;
            int b1 = image[3 * pos + 0];
            int g1 = image[3 * pos + 1];
            int r1 = image[3 * pos + 2];
            //right: x--x
            edgeList[cnt].r1 = pos;     //current
            edgeList[cnt].r2 = pos + 1; //right
            int bdiff = abs(b1 - image[3 * (pos + 1) + 0]);
            int gdiff = abs(g1 - image[3 * (pos + 1) + 1]);
            int rdiff = abs(r1 - image[3 * (pos + 1) + 2]);
            edgeList[cnt++].diff = max3(bdiff, gdiff, rdiff) ;
            //below: x
            //       |
            //       x
            edgeList[cnt].r1 = pos;
            edgeList[cnt].r2 = pos + width;
            bdiff = abs(b1 - image[3 * (pos + width) + 0]);
            gdiff = abs(g1 - image[3 * (pos + width) + 1]);
            rdiff = abs(r1 - image[3 * (pos + width) + 2]);
            edgeList[cnt++].diff = max3(bdiff, gdiff, rdiff);
        }
    }
    //x=width-1;
    for (int y = 0; y < ymax; y++) {
        int pos = y * width + (width - 1); // (x,y) = (width-1, y)
        // x
        // |
        // x
        edgeList[cnt].r1 = pos;
        edgeList[cnt].r2 = pos + width;
        int bdiff = abs((int)image[3 * pos + 0] - image[3 * (pos + width) + 0]);
        int gdiff = abs((int)image[3 * pos + 1] - image[3 * (pos + width) + 1]);
        int rdiff = abs((int)image[3 * pos + 2] - image[3 * (pos + width) + 2]);
        edgeList[cnt++].diff = max3(bdiff, gdiff, rdiff);
    }
    //y=height-1;
    for (int x = 0; x < xmax; x++) {
        int pos = (height - 1) * width + x;      //(x,y)=(x, height-1);
        //right; x--x
        edgeList[cnt].r1 = pos;
        edgeList[cnt].r2 = pos + 1;
        int bdiff = abs((int)image[3 * pos + 0] - image[3 * (pos + 1) + 0]);
        int gdiff = abs((int)image[3 * pos + 1] - image[3 * (pos + 1) + 1]);
        int rdiff = abs((int)image[3 * pos + 2] - image[3 * (pos + 1) + 2]);
        edgeList[cnt++].diff = max3(bdiff, gdiff, rdiff);
    }
    return edgeList;
}
int Srm::Segment() {
    // 4-connectivity 
    int nedge = 2 * (width - 1) * (height - 1) + (height - 1) + (width - 1);
    Edge* edgeList = Pairs(nedge);
    BucketSort(edgeList, nedge);
    for (int i = 0; i < nedge; i++) {
        Edge &e = edgeList[i];
        int r1 = UF->Find(e.r1);
        int r2 = UF->Find(e.r2);
        if ((r1 != r2) && (Predicate(r1, r2)))
            Merge(r1, r2);
    }
    delete [] edgeList;
    int rgn_count = 0;
    for (int node = width * height; node-- > 0;)
        if (UF->IsRoot(node)) rgn_count++;
    return rgn_count;
}
// sorting with buckets; returns an ordered edgeList;
void BucketSort(Edge* &edgeList, int n) {
    int hist[256] = {0}, chist[256];
    for (int i = 0; i < n; i++) hist[edgeList[i].diff]++;
    // cumulative histogram
    chist[0] = 0;  // Note, chist[0] ne hist[0];
    for (int i = 1; i < 256; i++)
        chist[i] = chist[i - 1] + hist[i - 1];

    Edge *ordered = new Edge [n];
    for (int i = 0; i < n; i++)
        ordered[chist[pair[i].diff]++] = pair[i];        
    delete[] edgeList;
    edgeList = ordered;
}
728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

영상에 Impulse Noise 넣기  (2) 2023.02.09
Canny Edge: Non-maximal suppression  (0) 2023.01.11
Moment-preserving Thresholding  (0) 2022.05.29
Minimum Cross Entropy Thresholding  (0) 2022.05.29
Quadtree Segmentation  (0) 2022.05.21
,

영상의 히스토그램(h[z]h[z])이 bimodal로 주어지는 경우 적절한 threshold 값을 선택해서 전경과 배경을 분리할 수 있다. 전경을 대표하는 픽셀 값을 zfzf, 배경을 대표하는 픽셀 값을 zbzb라면 이진화 후 정규화된 히스토그램은 

˜h[z]=pbδz,zb+pfδz,zf~h[z]=pbδz,zb+pfδz,zf

로 표현된다. pbpb은 배경에 해당하는 픽셀 비율이고, pfpf은 전경에 해당하는 픽셀 비율이다.

threshold 값을 어떻게 선택하면 이진화된 영상의 히스토그램이 원 영상의 히스토그램의 특성을 최대한 담게 할 수 있을까? 이에 대한 기준으로 두 히스토그램의 nn차 moment가 같은 값을 갖도록 하자. 주어진 미지수가 pbpb, pfpf, zbzb, zfzf이 있으므로 최소한 4개의 moment가 같도록 만들어야 한다. 가장 낮은 찾수의 moment로부터 시작해서 3차까지 4개의 moments가 같다는 조건에서 아래의 식들을 얻을 수 있다.

0-차 moment: m0255z=0h[z]=pb+pf=1

1-차 moment: m1255z=0zh[z]=pbzb+pfzf

2-차 moment: m2255z=0z2h[z]=pbz2b+pfz2f

3-차 moment: m3255z=0z3h[z]=pbz3b+pfz3f

원 영상의 moment m0, m1, m2, m3을 계산해서 풀면

c0=m3m1m22m0m2m21,c1=m1m2m0m3m0m2m21zb=12(c1c214c0)zf=12(c1+c214c0)pb=zfm1zfzbpf=1pb

따라서 threshold 값

T1z=0h[z]=pb

을 만족하는 T을 선택하면 된다.

 

Ref: W. Tsai, "Moment-preserving thresholding: a new approach," Computer Vision, Graphics, and Image Processing, vol. 29, pp. 377-393, 1985.

int MomentsPreseving_threshold(int histogram[256]) {
    int tot = 0;
    for (int i = 0; i < 256; i++)
        tot += histogram[i];
    //normalised histogram
    double hist[256];
    for (int i = 0; i < 256; i++)
        hist[i] = double(histogram[i]) / tot;
    /* moments calculation: zero moment is 1 by defintion*/
    double m0 = 1, m1 = 0, m2 = 0, m3 = 0;
    for (int i = 0; i < 256; i++ ) {
        double h = hist[i];
        m1 += i * h;
        m2 += i * i * h;
        m3 += i * i * i * h;
    }
    double det = m0 * m2 - m1 * m1;
    double c0 = (m1 * m3 - m2 * m2) / det;
    double c1 = (m2 * m1 - m3 * m0) / det;
    double zb = 0.5 * (-c1 - sqrt (c1 * c1 - 4.0 * c0));
    double zf = 0.5 * (-c1 + sqrt (c1 * c1 - 4.0 * c0));
    double pb = (zf - m1) / (zf - zb);  
    double s = 0;
    for (int i = 0; i < 256; i++) {
        s += hist[i];
        if (s > pb)
            return i; // threshold
    }
    return 0;
}
728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Canny Edge: Non-maximal suppression  (0) 2023.01.11
Statistical Region Merging  (0) 2022.06.11
Minimum Cross Entropy Thresholding  (0) 2022.05.29
Quadtree Segmentation  (0) 2022.05.21
Harris Corner Detector  (0) 2022.04.07
,

threshold=argmin0t<256[pf(t)log(μf(t))pb(t)log(μb(t))]

where

pb(t)=t0h(z)dz,pf(t)=255th(z)dz

μb(t)=1pb(t)t0zh(z)dz,μf(t)=1pf(t)255tzh(z)dz

중간=Otsu, 마지막=MCE

Ref: Li C.H. and Tam P.K.S. (1998) "An Iterative Algorithm for Minimum Cross Entropy Thresholding"Pattern Recognition Letters, 18(8): 771-776

double MCE_threshold(int hist[256]) {
    int chist[256], cxhist[256];
    chist[0] = hist[0]; cxhist[0] = 0;
    for (int i = 1; i < 256; i++) { 
        chist[i] = hist[i] + chist[i - 1];
        cxhist[i] = i * hist[i] + cxhist[i - 1];
    }
    int num = chist[255];
    double mean = double(cxhist[255]) / num;
    /* Initial estimate */
    double threshold = mean;
    while (1) {
        double old_thresh = threshold;
        int t = int(old_thresh + .5);
        /* background */
        int bgnum = chist[t];
        int bgsum = cxhist[t];
        double bgmean = bgnum == 0 ? 0: double(bgsum) / bgnum;
        /* foreground */
        int fgnum = num - bgnum;
        int fgsum = cxhist[255] - bgsum;
        double fgmean = fgnum == 0 ? 0: double(fgsum) / fgnum;
        threshold = (bgmean - fgmean) / (log(bgmean) - log(fgmean));
        // new thresh is a simple round of theta;
        ASSERT(threshold >= 0);
        if (fabs(threshold - old_thresh) < 0.5)
           break;
    }
    return threshold;
}
728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Statistical Region Merging  (0) 2022.06.11
Moment-preserving Thresholding  (0) 2022.05.29
Quadtree Segmentation  (0) 2022.05.21
Harris Corner Detector  (0) 2022.04.07
Valley emphasis Otsu threshold  (0) 2022.02.23
,