Processing math: 97%

점집합을 일반적인 2차 곡선으로 피팅하는 경우에 방정식은

ax2+by2+cxy+dx+ey+f=0

의 계수를 주어진 데이터를 이용하여서 구해야 한다. 실제 문제에서는 타원, 포물선 쌍곡 선등의 타입에 따라 몇 가지 제약 조건을 넣어 피팅을 한다. 원은 타원의 특별한 경우로 일반적으로 a=b, c=0의 제약 조건이 필요하다. 그러나 보다 엄밀하게 제약을 하게 되면 a=b=1의 추가 조건을 줄 수 있다. 이 경우는 점들이 모두 일직선에 있는 경우를 (a=b=0) 취급할 수 없게 된다. 이 예외적인 경우를 제외하고는 최소자승법을 사용하면 계수를 매우 쉽게 구할 수 있기 때문에 많이 이용된다.

 

문제: 주어진 데이터를 fitting 하는 이차곡선(원)

x2+y2+Ax+By+C=0

의 계수 A,B,C를 최소자승법을 사용해서 구하라. 

 

주어진 점집합이 원 위의 점이면 우변이 0이 되어야 하나, 실제 데이터를 얻는 과정에서 여러 노이즈에 노출되므로 일반적으로 0이 되지 않는다. 최소자승법은 주어진 점들이 원에서 벗어나는 정도의 제곱 합이 최소가 되도록 하는 계수 A,B,C를 결정한다.  원과 점의 편차의 제곱합
L=i|x2i+y2i+Axi+Byi+C|2,

의 극값을 찾기 위해서 A,B, 그리고 C에 대해 미분을 하면

LA=2i(x2i+y2i+Axi+Byi+C)xi=0,

LB=2i(x2i+y2i+Axi+Byi+C)yi=0,

LC=2i(x2i+y2i+Axi+Byi+C)=0.

이 연립방정식을 풀면  A,B,C를 구할 수 있다. 계산을 단순하게 만들고 수치적 안정성을 높이기 위해 입력점들의 질량중심 

mx=1Nixi,my=1Niyi

계에서 계산을 하자. 이를 위해 입력점의 x, y 성분에서 각각 mx, my만큼을 빼준 값을 좌표값으로 대입하면 된다: 

xiximx,yiyimy

그러면 질량중심 좌표계에서는 Sx=ixi=0, Sy=iyi=0이 된다.

우선 세 번째 식에서 

C=Sx2+Sy2N

을 얻을 수 있고, 첫번째와 두 번째 식에서는 각각

Sx2A+SxyB=(Sx3+Sxy2)

SxyA+Sy2B=(Sy3+Sx2y)

을 얻을 수 있다. 이를 풀면

A=Sy2(Sx3+Sxy2)+Sxy(Sy3+Sx2y)Sx2Sy2S2xy

B=Sx2(Sy3+Sx2y)+Sxy(Sx3+Sxy2)Sx2Sy2S2xy

여기서 주어진 데이터의 각 차수에 해당하는 moment는 아래처럼 계산된다:

추정된 원의 중심 (cx,cy)는 

cx=A2,cy=B2

로 주어지고, 반지름은 

r2=c2x+c2yC=c2x+c2y+1N(Sx2+Sy2)

로 주어진다.

Ref: I. Kasa, A curve fitting procedure and its error analysis. IEEE Trans. Inst. Meas., 25:8-14, 1976

/* 구현 코드: 2024.04.01, typing error 수정 & 질량중심계 계산으로 수정;*/
double circleFit_LS(std::vector<CPoint> &Q, double &cx, double &cy, double &radius) {
    if (Q.size() < 3) return -1;
    double sx2 = 0.0, sy2 = 0.0, sxy  = 0.0;
    double sx3 = 0.0, sy3 = 0.0, sx2y = 0.0, sxy2 = 0.0;
    double mx = 0, my = 0;            /* center of mass;*/
    for (int k = Q.size(); k-->0;)
        mx += Q[k].x, my += Q[k].y;
    mx /= Q.size(); my /= Q.size();
    /* compute moments; */
    for (int k = Q.size(); k-->0;) { /* offset (mx, my)*/
        double x = Q[k].x - mx, xx = x * x;
        double y = Q[k].y - my, yy = y * y;
        sx2  += xx;      sy2  += yy;      sxy  += x * y;
        sx3  += x * xx;  sy3  += y * yy;
        sx2y += xx * y;  sxy2 += yy * x;
    }
    double det = sx2 * sy2 - sxy * sxy;
    if (fabs(det) < 1.e-10) return -1;    /*collinear한 경우임;*/
    /* center in cm frame; */
    double a = sx3 + sxy2;
    double b = sy3 + sx2y;
    cx = (sy2 * a - sxy * b) / det / 2;
    cy = (sx2 * b - sxy * a) / det / 2;
    /* radius squared */
    double radsq = cx * cx + cy * cy + (sx2 + sy2) / Q.size();
    radius = sqrt(radsq);
    cx += mx; cy += my; /* recover offset; */
    return fitError(Q, cx, cy, radius);
}

https://kipl.tistory.com/357

 

Circle Fitting: Pratt

주어진 점집합을 원으로 피팅하기 위해 이차식A(x2+y2)+Bx+Cy+D=0을 이용하자. 원의 경우는 A=0인 경우는 직선을 나타내고, A0인 경우가 원을 표현한다. 물론 A=1로 설정을 할 수 있으

kipl.tistory.com

https://kipl.tistory.com/32

 

RANSAC: Circle Fit

RANSAC 알고리즘을 써서 주어진 2차원 점집합에서 원을 추정한다. 원을 만들기 위해서는 최소한 3점이 필요하고, 또 일직선에 있지 않아야 한다. 이렇게 만들어진 원은 세 점을 꼭짓점으로 하는 삼

kipl.tistory.com

 

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

PCA Line Fitting  (0) 2020.11.12
Histogram Equalization  (0) 2020.11.12
Integer Sqrt  (0) 2020.11.11
Parabolic Interpolation in Peak Finding  (3) 2020.11.10
Histogram Matching  (0) 2012.11.03
,

히스토그램처럼 균일한 간격으로 주어진 데이터에서 피크 값의 위치를 찾기 위해서는 먼저 노이즈 제거를 위해 몇 번의 smoothing 과정을 적용해야 한다 (구체적인 방법은 필요에 따라 다양하다). smoothing 과정을 거친 히스토그램에서 피크 위치를 찾는 것은 쉬운 작업이다. 그런데 경우에 따라 그 위치를 sub-order까지 구해야 필요가 생긴다. 예를 들면, 실수 값 데이터 시퀀스 대한 히스토그램을 만들려면 먼저 정수로 양자화시켜야 가능하다. 이 양자화된 정보를 담고 있는 히스토그램에서 피크의 위치를 찾으려 할 때 양자화 과정에서 잃어버린 정밀도를 복원하려면 interpolation을 써야 한다. 간단하게 parabolic 근사로 피크의 위치를 찾는 경우를 생각하자. 이 방법은 수학적으로 단순하지만 영상처리 알고리즘에서 많이 이용이 되고 있다. 데이터 시퀀스가 균일한 간격에서 주어졌으므로 계산은 1,0,1의 세 군데 위치에서 중앙 근방에 피크가 나타나는지를 고려하면 된다. 세 점에서 히스토그램 값이 각각 hm,h0,hp일 때 이들을 지나는 이차 곡선의 피크 위치를 찾자. 주어진 이차 곡선을

y=a(xc)2+b

꼴로 쓰면 c가 0에서 벗어난 정도를 나타낸다.

(1,hm)hm=a(1c)2+b

(0,h0)h0=ac2+b

(+1,hp)hm=a(+1c)2+b

이므로

hmhp=4ac,

hm+hp2h0=2a,

아래 코드는 피크의 위치가 중앙점에서 벗어난 정도를 준다.

bool parabolicInterpolate(double hm, double h0, double hp, double *c) {
      double a = hm + hp - 2 * h0;
      if (a >= 0) return false; // not a parabola(a==0), not convex up(a>0);
      *c = 0.5 * (hm - hp) / a;
      if (*c < -0.5 || *c > 0.5) return false; //  too far;
      return true;
}
728x90
,

Adaptive threshold를 적용하는 데 있어서 윈도 계산의 로드를 줄이는 방법은 integral image을 이용하면 된다. 물론 메모리의 소요가 부가적으로 발생하지만, 요 근래의 스마트 기기에서는 메모리는 별로 문제가 안된다.

아래의 코드는 integral 이미지를 이용해서 moving 윈도 내의 픽셀 평균 (= local average)을 기준으로 영상을 이진화시키는 함수다 (정확히는 "평균값 - 3"이다. 여기서 3은 바코드 인식 open library인 zbar에서 쓰는 기준을 잡았다. zbar library에서는 moving average를 구해 임계값으로 사용하는데, 윈도가 움직이면서 나가는 픽셀과 들어오는 픽셀을 업데이트하는 과정이 정확히 구현이 되어 있지는 않다. 그렇지만 근사적으로는 맞게 구현되어 있으므로 코드는 대부분의 경우 원하는 데로 잘 동작을 한다. integral image를 이용하면 윈도가 이동에 따른 픽셀 정보를 업데이트하는 복잡한 과정이 필요 없이 integral image의 단순 합/차만 수행하면 된다)

"윈도 평균-3" 대신 윈도의 표준편차를 이용할 수 있다. 그러나 이 경우에는 합의 제곱에 대한 적분 영상이 하나 더 필요하고, 얼마의 편차를 허용할 것인지를 정해야 한다. 이 기준에 맞게 구현된 코드는 http://kipl.tistory.com/30에서 찾을 수 있다.

2차원 바코드가 아닌 일차원 바코드 영상을 이진화할 때는 이만큼 복잡한(?) 알고리즘을 쓸 필요가 없다. 일차원 바코드는 보통 한 scanline의 정보만으로도 인식이 가능하므로 라인 단위의 이진화를 시키면 충분히다. 이 경우도 moving average를 사용하면 매우 간단하게 adaptive 한 임계값을 구할 수 있다. scanline 기준이므로 integral image는 따로 필요하지 않다.

void makeIntegralImage(BYTE *image, int width, int height, int* intImage);
더보기
void makeIntegralImage(BYTE *image, int width, int height, int* intImage) {    
    intImage[0] = image[0]; 
    for (int x = 1; x < width; ++x)
        intImage[x] = intImage[x - 1] + image[x];
    //next line;
    image += width;
    for (int y = 1, offset = y * width; y < height; ++y, offset += width) {
        int linesum = 0;
        for(int x = 0; x < width; ++x) {
            linesum += image[x];
            intImage[offset + x] = intImage[offset - width + x] + linesum ;
        }
        //next line;
        image += width ;
    }
}
/*
** moving window의 중심에 해당픽셀을 놓을 필요는 없다; 
*/
void thresholdByIntegralImage(BYTE *image, int width, int height, int wsz, BYTE *matrix) { 
    std::vector<int> intImage(width * height);
    makeIntegralImage(image, width, height, &intImage[0]);
    const int winArea = wsz * wsz ;
    /* const int wsz = 10;*/
    for (int y = 0, offset = 0; y < height; y++, offset += width) {
        int top = y - (wsz >> 1) ;
        if (top < 0 ) top = 0;
        else if (top > height - wsz) top = height - wsz;
        int bottom = top + wsz - 1;
        // y-range = [top, bottom];
        for (int x = 0; x < width; x++) {
            int left = x - (wsz>>1);
            if (left < 0) left = 0;
            else if (left > width - wsz) left = width - wsz;
            int right = left + wsz - 1;
            // xrange = [left, right];
            //
            int sum1 = (left > 0  && top > 0) ? intImage[(top - 1) * width + left - 1] : 0;
            int sum2 = (left > 0) ? intImage[bottom * width + left - 1] : 0;
            int sum3 = (top > 0) ? intImage[(top - 1) * width + right] : 0;
            //
            int graySum = intImage[bottom * width + right] - sum3 - sum2 + sum1;
            // overflow ? 
            // Threshold T = (window_mean - 3); why 3?
            if ((image[offset + x] + 3) * winArea <= graySum)
                matrix[offset + x] = 0xFF; //inverted!
            else
                matrix[offset + x] = 0x00;
        }
    }
}

 

QR 코드가 인쇄된 지면에 그라데이션이 있어서 전역 이진화로는 코드의 분리가 쉽지 않다.
728x90

'Image Recognition' 카테고리의 다른 글

Least Squares Estimation of Perspective Transformation  (4) 2012.02.15
Perspective Transformation  (2) 2012.02.14
Peak Finder  (1) 2012.02.02
QR-code: decoder  (0) 2012.01.26
QR-code: detector  (0) 2012.01.12
,