Find two disjoint regions $Ω_1$, $Ω_2$ in the plane, each of prescribed area, $A(Ω_1) = a_1 > 0$, $ A(Ω_2) = a_2 > 0$, so that they are enclosed by curves of least total perimeter.
Theorem (Alfaro, Brock, Foisy, Hodges, & Zimba) For any given areas $a_1$, $a_2 > 0$, the two-region isoperimetric problem is solved by a unique “standard double-bubble”: each boundary arc is circular, and the arcs meet at an angle of $120^\circ$.
Soap bubble physics: https://youtu.be/Dk0dB4HYnu0?si=r9l9GNQA6-A9_pt6
728x90
'Mathematics' 카테고리의 다른 글
Geometric Median (0) | 2024.06.14 |
---|---|
삼각형 내부에 외접원의 중심이 포함될 확률은? (1) | 2024.06.03 |
Fourier Interpolation (0) | 2024.03.20 |
Generalized eigenvalues problem (0) | 2024.03.02 |
수치적으로 보다 정밀한 이차방정식의 해 (0) | 2024.02.23 |