Loading [MathJax]/jax/output/CommonHTML/jax.js

이전 포스트에서 타원의 한 초점에서 나오는 빛은 타원에서 반사가 되면 다른 초점으로 모임을 보였다. 타원의 한 지점에서 접선벡터와 입사광선이 이루는 각이 접선벡터와 반사광의 이루는 각과 같음을 의미한다. 이를 물리적으로 증명하자. 그림과 같이 평면에 높인 타원이 있고, 타원의 한 지점에 길이 L인 줄을 걸친 후 두 초점을 통과하도록 만든다. 이제 초점을 통과한 줄 끝에 같은 무게의 추를 매단다. 두 추의 무게가 같으므로 추는 움직이지 않는 평형상태이고, 초점에서 매듭까지 거리를 각각 d1,d2라면 평면 아래로 늘어진 길이가 Ld1d2이므로 두 추의 총 중력위치에너지는 U=(d1+d2L)mg로 써진다.

그런데 타원상의 임의의 지점에서 d1+d2=const이므로 중력위치에너지는 일정하게 된다. 따라서 추의 중력 때문에 줄에 생기는 장력은 타원의 접선방향 성분은 없고 오직 타원의 접선에 수직한 성분만을 만든다(힘은 위치에너지의 그래디언트임). 줄이 매듭에 작용하는 장력(매듭에서 각 초점을 향하는 방향이다)을 각각 T1, T2라면, T1+T2는 매듭 위치에서 타원의 법선방향이어야 한다. 이는 T1T2의 접선성분이 같음을 의미하므로 두 줄이 접선과 이루는 각이 같게 되어 반사법칙을 보일 수 있게 된다.

728x90
,