$$I= \int_0^\infty \frac{x^{a-1} dx }{ x^2 + x+1} = \frac{2\pi}{\sqrt{3}} \csc(\pi a) \sin\frac{\pi (1-a)}{3},~~ 0<a < 2$$
함수 $f(z)$
$$ f(z) = \frac{z^{a-1}}{z^2 + z+1}$$
의 conttour 적분을 고려하자. $z=\frac{-1+i\sqrt{3}}{2}=\gamma, ~\frac{-1-i\sqrt{3}}{2}=\gamma ^2$가 $f(z)$의 simple pole 위치다. 그리고 residue값은
\begin{align} \text{Res}f( \gamma) &= \frac{\gamma^{a-1}}{\gamma - \gamma^2}= \frac{i}{\sqrt{3}} e^{i\pi a} e^{-i \pi (a-1)/3} \\ \text{Res}f(\gamma^2) &= \frac{\gamma^{2(a-1)}}{\gamma^2- \gamma} = \frac{-i}{\sqrt{3}}e^{i\pi a} e^{i\pi(a-1)/3}\end{align} $x^a$ 때문에 branch cut을 선택해야 하는데 $+x$으로 잡자. 그러면 $0 \le \text{arg}(z) \le 2\pi $로 잡을 수 있다.
경로 $C_1$에서 $z= x e^{i0}, ~(x:0\to \infty)$이므로
$$ \int_{C_1} f(z)dz = \int_0^\infty \frac{x^{a-1}dx}{x^2+x+1} = I$$
경로 $C_2$에서 $z= x e^{i 2\pi},~(x:\infty \to 0)$이므로
$$ \int_{C_2} f(z)dz = e^{i 2\pi (a-1)} \int_\infty^0 \frac{x^{a-1} dx}{x^2 + x+1} = - e^{i 2\pi a} I $$
그리고 $C_\epsilon$과 $C_\infty$에서는 적분은 0이다:$$\int_{C_\epsilon} f(z)dz \sim \epsilon^a \to0\\ \int_{C_\infty} f(z)dz \sim \frac{1}{R^{2-a}}\to 0$$따라서
$$ \oint f(z)dz = 2\pi i [ \text{Res}f(\gamma) + \text{Res}f(\gamma^2)]\quad \to \quad I = \frac{2\pi}{\sqrt{3}} \csc(\pi a)\sin \frac{\pi (1-a)}{3}$$
'Mathematics' 카테고리의 다른 글
Integration along a branch cut-024 (0) | 2024.10.07 |
---|---|
Integration along a branch cut-023 (0) | 2024.10.06 |
Integration along a branch cut-021 (0) | 2024.10.01 |
Integration along a branch cut-020 (0) | 2024.09.28 |
Integration along a branch cut-019 (0) | 2024.09.25 |