위쪽 물체를 일정한 속도로 위로 당기다 보면 용수철로 연결된 아래쪽 물체가 어느 순간 바닥에서 떨어진다. 그런데 너무 빠르게 당기면 아래쪽 물체가 나중에 위쪽 물체와 부딪칠 수 있다. 당기는 속도가 얼마일 때 이런 현상이 가능한가? 압축된 용수철의 길이는 $L$이고, 용수철은 완전히 압축될 수 있다고 가정한다.(고무줄로 생각하면 된다)

힌트: 위쪽 물체와 같이 일정하게 위로 움직이는 관찰자 입장에서 생각하는 것이 쉽다.

 
더보기

처음 용수철은 원래 길이($L_0$)보다 $  mg /k=d_0$만큼 압축이 된 상태($L = L_0 -d_0$)이다. 바닥의 물체가 뜨기 위해서는 용수철이 원래길이보다 $d_0$만큼 더 늘어나야 한다. 위로 $v$로 움직이는 관찰자가 보면 바닥에서 떨어지기 직전 역학적 에너지는(위쪽 물체를 중력 위치에너지 기준점으로 삼음)

$$ E_i = \frac{1}{2} mv^2 + \frac{1}{2} kd_0^2 - mg(L + 2d_0)$$

충돌 직전 역학적 에너지는 용수철의 길이가 0이 되게 압축이 되었으므로

$$ E_f = \frac{1}{2} k (L+d_0)^2 $$

이다. 정리하면 

$$v^2 = \frac{k}{m} \left( L + \frac{2mg}{k} \right)^2 \ge  \frac{k}{m} \left( 2\sqrt{\frac{2Lmg}{k}} \right)^2$$ 

$$ \therefore~v \ge 2 \sqrt{2gL}$$

728x90
Posted by helloktk
,