타원은 베지어 곡선을 이용해서 근사적으로 표현할 수 있음을 잘 알고 있다(https://kipl.tistory.com/313). 표준형 타원의 경우 1사분면에서 표현만 알면 대칭성에 의해서 나머지 사분면에서는 바로 구할 수 있으므로 거리를 구하는 점이 1사분면에 있는 경우만 알아보면 충분하다. 장축 반지름이 $a$, 단축 반지름이 $b$인 타원은 다음과 같이 베이지 곡선으로 표현된다.

 

Bezier Curve Approximation of an Ellipse

Bezier 곡선을 이용한 원의 근사처럼 타원을 근사해보도록 하자. 원점을 중심으로 하고 장축 반지름이 $a$, 단축 반지름이 $b$인 타원을 1사분에서 3차 Bezier curve을 이용해서 근사하려면 4개의 control

kipl.tistory.com

$$\mathbf {B}(t) = (1-t^3) \mathbf {P}_0 + 3t(1-t)^2 \mathbf {P}_1 + 3t^2 (1-t) \mathbf {P}_2 + t^3 \mathbf {P}_3 = \left(\begin {array}{c} a x(t) \\ b y(t) \end {array}\right) $$

$$ x(t) = 3k (1-t)^2 t + 3 (1-t) t^2 + t^3 \\ y(t) = x(1-t) ,  \quad 0 \le t \le 1$$

$k$ 값은 $t=1/2$일 때 $(a/\sqrt {2}, b/\sqrt {2})$을 통과하는 조건을 부여하여 정하면

$$ k = \frac {4}{3}(\sqrt {2}-1)= 0.5522847498...$$임을 알 수 있다. 

 

한 점 ${\bf P}=(p,q)$에서 베지어 곡선 위의 한 점 ${\bf B}(t)$까지의 거리가 최단거리가 되기 위해서는 다음 직교 조건

$$f(t)= ({\bf B}(t) - {\bf P})\cdot {\bf B}'(t) = 0 \\ f(t)=a^2x(t)x'(t)-b^2y(t)y'(t)-ap x'(t)-bqy'(t)=0$$

을 만족하는 근을 찾으면 된다. 풀어야 할 방정식이 5차이므로 직접적으로 근을 찾는 것은 불가능하므로 Newton-Raphson 방법을 사용하도록하자. 앞선 정확한 거리 계산에서와는 달리 초기 $t$ 값 설정에 민감하게 의존하지 않는다.

//cubic bezier_x: P0(0, 1), P1(k, 1),P2(1, k), P3(1, 0);
double B(double t) { //t in [0:1]
    const double k = 4.*(sqrt(2.)-1)/3;
    return t*(3*k + t*(3 - 6*k + (-2 + 3*k)*t));
}
// derivative of B(t);
double DB(double t) {
    const double k = 4.*(sqrt(2.)-1)/3;
    return 3*k + t*(6 - 12*k + (-6 + 9*k)*t);
}
// derivative of DB(t);
double D2B(double t) {
    const double k = 4.*(sqrt(2.)-1)/3;
    return 6 - 12*k + (-12 + 18*k)*t;
}
// ellipse radii=(a, b);
double dist2EllipseBezier3(double p, double q, double a, double b,
                           double& xt, double& yt) {
    if (a == b) return dist2Circle(p, q, a, xt, yt);
    double x = fabs(p), y = fabs(q);
    const double eps = 0.001 / max(a, b);
    double t = 0.5;  // mid
    while (1) {
        // Newton-Raphson;
        double f = a*a*B(t)*DB(t)-b*b*B(1-t)*DB(1-t)-a*x*DB(t)+b*y*DB(1-t);
        if (f == 0) break;
        double df = a*a*(DB(t)*DB(t)+B(t)*D2B(t))+b*b*(DB(1-t)*DB(1-t)+B(1-t)*D2B(1-t))
                    -a*x*D2B(t)-b*y*D2B(1-t);
        double dt = f / df;
        t -= dt;
        t = max(0, min(1, t));
        if (abs(dt) < eps ) break;
    }
 
    xt = a * B(t); yt = b * B(1-t);
    xt = p >= 0? xt: -xt;
    yt = q >= 0? yt: -yt;
    return hypot(p - xt, q - yt);
}
 
 
 
 
 
 
 
 
 

이심률이 큰 경우와 작은 경우

 

 
 
 
 
 
 
 
 
 
728x90

'Computational Geometry' 카테고리의 다른 글

Why Cubic Splines?  (9) 2024.03.16
Natural Cubic Spline  (0) 2024.03.11
Distance from a Point to an Ellipse  (0) 2024.03.06
Data Fitting with B-Spline Curves  (0) 2021.04.30
Closest Pair of Points  (0) 2021.04.27
Posted by helloktk
,

 

 

타원  외부의 한 지점에서 타원까지의 최단거리를 구하자. 타원 피팅 문제에서 피팅 에러를 예측하는데 유용하게 사용할 수 있다. 일반적인 타원은 타원의 중심과 회전각을 구해서 원점으로 평행이동 후 다시 반대로 회전시켜서 표준형으로 만든 후 구하면 되기 때문에 표준형에 대해서만 고려해도 충분하다.(외부점도 동일하게 평행이동 시키고 회전시켜야 한다). 또한 표준형 타원의 경우도  대칭성에 의해서 외부점이 1 사분면에 있는 경우만 살펴보면 충분하다. 

외부점 $(p, q)$에 타원 상의 한 점 $(x, y)$까지의 거리가 최단 거리가 되기 위해서는  두 점을 잇는 선분과 타원에서 접선이 서로 직교해야 한다는 사실에서 $(x,y)$ 위치를 정할 수 있다.

우선 타원 상의 한 점 $(x,y)$에서  접선의 기울기는 

$$ \frac{dy}{dx} = - \frac{b^2 x}{a^2 y}$$

이고, $(p,q)$까지 선분의 기울기가 $$ m =\frac{ y - q}{x-p}$$이다. 서로 직교하기 위해서는 이 둘의 곱이 $-1$이어야 한다.

$$ \left(-\frac{b^2 x}{a^2 y} \right)  \frac{y-q}{x-p} = -1 \quad \to\quad (a^2 -b^2 )xy + b^2 qx - a^2 y p = 0$$

접점 $(x, y)$는 타원 위에 있다는 점을 고려하면 $x$나 $y$에 대한 4차 방정식을 풀면 답을 analytic하게  쓸 수 있다. 하지만 직접적으로 이용하기에는 너무 복잡한 형태이므로 대부분의 경우는 Newton-Raphson 방법과 같은 반복적인 수치해석 기법을 이용해서 답을 얻는다. 이를 위해 타원을 

$$ x= a \cos t, \quad y = b \sin t$$

로 매개화하면 최단거리를 주는 점을 찾는 문제는 다음 $f(t)$의 근을 찾는 문제로 환원이 된다.

$$ f(t) =  (a^2 -b^2) \cos t \sin t - ap \sin t + bq \cos t = 0, \quad 0 \le t  \le\frac{\pi}{2}$$

$z= \tan(t/2)$로 치환하면 이 식의 근을 구하는 문제는 $z$에 대한 4차 방정식의 근을 구하는 문제와 동일함을 보일 수 있다.

 

/*(a, b)=radii of ellipse; 타원에 포함되는 점에 대해서는 초기조건 설정에 주의;*/
double dist2Ellipse(double p, double q, double a, double b, double& xt, double& yt) {
    if (a == b) return dist2Circle(p, q, a, xt, yt); //원의 경우 별도 처리;
    if (x == 0 && y == 0) //원점의 경우 별도처리;
        if (a > b) { xt = 0,  yt = b; return b;} 
        else { xt = a, yt = 0; return a;}
    double x = fabs(p), y = fabs(q);
    const double eps = 0.01 / max(a, b);
    const int maxiters = 10;
    double t;
    if ((x*x/a/a + y*y/b/b) < 1) {// 타원 내부의 경우 초기조건의 조정이 필요함;
        double t1 = atan2(y/b, x/a), t2 = atan(1.);
        if (a > b) t = max(t1, t2);
        else t = min(t1, t2);
    } else t = atan2(y/b, x/a);
    for (int iter = 0; iter < maxiters; iter++) {
        double c = cos(t), s = sin(t);
        double f = (a*a - b*b)*c*s - a*x*s + b*y*c;
        if (f == 0) break;
        double Df = (a*a - b*b)*(c*c - s*s) - a*x*c - b*y*s;
        double dt = -f/Df;
        t += dt;
        t = max(0, min(2*atan(1.), t)); //[0:pi/2];
        if (abs(dt) < eps ) break;
    }
    xt = a * cos(t); yt = b * sin(t);
    xt = p >= 0? xt: -xt;
    yt = q >= 0? yt: -yt;
    return hypot(p-xt, q-yt);
}

위 알고리즘은 Newton-Raphson iteration이 수렴하지 않을 수도 있다. 좀 더 좋은 방법은 외부점에서 타원에 내린 수선의 발에서 접촉원(osculating circle)을 구하면 수선의 연장선은 접촉원의 중심을 지난다.

$$ \vec{c} =\left( \frac{ a^2 - b^2 }{a} \cos ^3 t , \frac{b^2 - a^2}{b} \sin^3 t\right)  $$

만약 타원의 한 지점에서 접촉원 중심과 외부점을 연결하는 직선이 접선에 수직이 아닌 경우에는 그 지점은 최단점이 아니다. 이때는 이 직선과 타원의 교점까지의 거리가 좀 더 짧아진다. 다시 이 교점에서 접촉원을 구한 후 외부점과 중심을 연결하는 선분이 교차하는 새로운 교점을 찾는 과정을 반복하면 점점 교점은 최단점에 접근함을 알 수 있다. 이를 이용하면 좀 더 효율적인 점과 타원사이의 최단거리를 구하는 알고리즘을 만들 수 있다. 타원 위의  한 점 $\vec{e}$에서 접촉원의 중심을 구하면 중심  $\vec{c}$와  외부점$\vec{p}$을 연결하는 직선과 타원의 교점은 대략적으로 $\vec c$와 $\vec p$를 $|\vec{r}=\vec{e}-\vec{c}|: |\vec{q}=\vec{p}-\vec{c}| - |\vec{e}-\vec{c}|=r:q-r$로 내부하는 지점이다. 따라서 새로운 교점의 위치는

$$ \vec{r}' \approx \vec{c} + \frac{r}{q} \vec{q} $$

이다. 물론 이 지점이 정확히 타원 위에 있지는 않다. 타원 위에 있는 점은 각 축의 반지름으로 각성분을 나누면 단위원 위에 있어야 한다는 사실을 이용하면 $\vec{r}'$에 가장 가까이 있는 타원 상의 한 지점을 얻을 수 있다.  즉, 

$$  \cos t = \frac{x'/a}{\sqrt{(x'/a)^2+(y'/b)^2}},\quad    \sin t = \frac{y'/b}{\sqrt{(x'/a)^2 + (y'/b)^2 }}$$

인 $t$을 구하면 새로운 타원 위의 지점은

$$ x''= a \cos (t), \quad y'' = b \sin t$$

로 된다.

double dist2Ellipse2(double p, double q, double a, double b, double& xt, double& yt) {
    if (a==b) return dist2Circle(p, q, a, xt, yt);//원의 경우에는 별도로;
    const double px = abs(p), double py = abs(q);
    const double eps = 0.01/max(a,b);
    const double cc = a*a - b*b;
    double cost, sint; 
    //근이 여러개 존재하므로 초기값 설정에 주의해야 한다;
    if ((px*px/a/a + py*py/b/b) < 1) //타원에 포함되는 경우;
    	cost = sint = 1/sqrt(2.); //  pi/4에서 출발;
    else { //타원바깥에 있는 경우;
        cost = cos(atan2(py/b, px/a));
    	sint = sin(atan2(py/b, px/a));
    }
    double t = 1, told = t;
    while (1) {
        // 곡률중심;evoute
        double cx = cc * pow(cost, 3.) / a;
        double cy = - cc * pow(sint, 3.) / b;
        // 곡률중심에 대한 타원 위의 점(교점)
        double x = a*cost - cx, y = b*sint - cy;
        // 곡률중심에 대한 외부점 변위
        double qx = px - cx, qy = py - cy;
        //거리;
        double r = hypot(x, y), q = hypot(qx, qy);
        cost = min(1, max(0, (qx * r / q + cx) / a));
        sint = min(1, max(0, (qy * r / q + cy) / b));
        double t = hypot(cost, sint); //1이 되면 좋지만 안되는 경우;
        cost /= t; sint /= t;
        if (abs(t-told) < eps) break;
        told = t;
    }
    xt = abs(a *cost), yt = abs(b *sint);
    xt = p >= 0 ? xt: -xt;
    yt = q >= 0 ? yt: -yt;
    return hypot(p - xt, q - yt);
}

이심률이 큰 경우

728x90

'Computational Geometry' 카테고리의 다른 글

Natural Cubic Spline  (0) 2024.03.11
Approximate Distance Between Ellipse and Point  (0) 2024.03.08
Data Fitting with B-Spline Curves  (0) 2021.04.30
Closest Pair of Points  (0) 2021.04.27
DDA Algorithm  (0) 2021.04.25
Posted by helloktk
,

일반적인 conic section 피팅은 주어진 데이터 $\{ (x_i, y_i)\}$를 가장 잘 기술하는 이차식

$$F(x, y) = ax^2 + bxy +cy^2 + dx +ey +f=0 $$

의 계수 ${\bf u^T}= (a,b,c,d,e,f)$을 찾는 문제이다. 이 conic section이 타원이기 위해서는 2차항의 계수 사이에 다음과 같은 조건을 만족해야 한다.

$$\text{ellipse constraint:}~~ ac - b^2/4 >0$$

그리고 얼마나 잘 피팅되었난가에 척도가 필요한데 여기서는 주어진 데이터의 대수적 거리 $F(x,y)$을 이용하자. 주어진 점이 타원 위의 점이면 이 값은 정확히 0이 된다. 물론 주어진 점에서 타원까지의 거리를 사용할 수도 있으나 이는 훨씬 복잡한 문제가 된다.  따라서 해결해야 하는 문제는

\begin{gather}L = \sum _{i}  \left( ax_i^2 + bx_i y_i + cy_i^2 +dx_i + e y_i +f\right)^2 - \lambda( 4ac-b^2-1) \\= \left|\begin{pmatrix}x_0^2& x_0y_0 & y_0^2 & x_0 & y_0 & 1\\ x_1^2 & x_1 y_1& y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2& y_2^2 & x_2& y_2 & 1\\ &&\vdots \\\end{pmatrix}\begin{pmatrix}a\\b\\c\\d\\e\\f \end{pmatrix}  \right|^2 -\lambda \left({\bf  u^T} \begin{pmatrix} 0& 0& 2&0&0&0\\ 0 &-1&0 &0 &0 &0\\ 2&0&0&0&0&0\\0&0&0&0&0&0 \\0&0&0&0&0&0\\0&0&0&0&0&0&  \end{pmatrix} \bf u -1\right) \\ =\bf u^T D^TD u -\lambda (u^T C u -1)\\ = \bf u^T S u -\lambda (u^T C u-1)\end{gather}

을 최소화시키는 계수 벡터 $\bf u$를 찾는 것이다. 여기서 제한조건으로 $4ac - b^2 =1= \bf u^T C u$로 설정했다. 

$\bf u^T$에 대해서 미분을 하면 

$$ \frac{\partial L}{\partial \bf u^T} =  \bf S u -\lambda C u=0$$

즉, 주어진 제한조건 $4ac - b^2=1$하에서 대수적 거리를 최소화시키는 타원방정식의 계수 $\bf u$를 구하는 문제는 scattering matrix $\bf S=D^T D$에 대한 일반화된 고유값 문제로 환원이 된다.

$$  \bf S u =\lambda C u \\ u^T C u =1$$

이 문제의 풀이는 직전의 포스팅에서 다른 바 있는데 $\bf S$의 제곱근 행렬 $\bf Q=S^{1/2}$를 이용하면 된다. 주어진 고유값 $\lambda$와 고유벡터 $\bf u$가 구해지면 대수적 거리는 $$\bf u^T S u = \lambda$$

이므로 이를 최소화시키기 위해서는 양의 값을 갖는 고유값 중에 최소에 해당하는 고유벡터를 고르면 된다. 그런데 고유값 $\lambda$의 부호별 개수는 $\bf C$의 고유값 부호별 개수와 동일함을 보일 수 있는데 (Sylverster's law of inertia),  $\bf C$의 고유값이 $\{-2,-1,2,0,0,0\}$이므로 $\lambda>0$인 고유값은 1개 뿐임을 알 수 있다. 따라서 $\bf S u = \lambda C u$를 풀어서 얻은  유일한 양의 고유값에 해당하는 고유벡터가 원하는 답이 된다.

https://kipl.tistory.com/370

 

Least Squares Fitting of Ellipses

일반적인 이차곡선은 다음의 이차식으로 표현이 된다: $$ F(x, y)=ax^2 + bxy + cy^2 +d x + ey + f=0$$ 6개의 계수는 모두 독립적이지 않고 어떤 종류의 이차곡선인가에 따라 제약조건이 들어온다. 주어진

kipl.tistory.com

https://kipl.tistory.com/565

 

Generalized eigenvalues problem

$\bf S$가 positive definite 행렬이고, $\bf C$는 대칭행렬일 때 아래의 일반화된 eigenvalue 문제를 푸는 방법을 알아보자. $$\bf S u = \lambda C u$$ 타원을 피팅하는 문제에서 이런 형식의 고유값 문제에 부딛

kipl.tistory.com

 Ref: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ellipse-pami.pdf

 

 
double FitEllipse(std::vector<CPoint>& points, double einfo[6] ) {     
    if ( points.size() < 6 ) return -1;
    double eigvals[6];
    std::vector<double> D(6 * points.size());
    double S[36];/*  S = ~D * D  */
    double C[36];
    double EIGV[36];/* R^T; transposed orthogonal matrix;*/

    double offx = 0, offy = 0;
    /* shift all points to zero */
    for(int i = points.size(); i--> 0; ) {	
        offx += points[i].x;
        offy += points[i].y;        	
    }
    offx /= points.size(); 
    offy /= points.size();

    /* for the sake of numerical stability, scale down to [-1:1];*/
    double scale = 0; 
    for (int i = points.size(); i-->0; ) {
        if (points[i].x > scale) scale = points[i].x;
        if (points[i].y > scale) scale = points[i].y;
    }
    double invscale = 1 / scale;
    /* ax^2 + bxy + cy^2 + dx + ey + f = 0*/
    /* fill D matrix rows as (x*x, x*y, y*y, x, y, 1 ) */
    for(int i = points.size(); i--> 0; ) {	
        double x = points[i].x - offx; x *= invscale; 
        double y = points[i].y - offy; y *= invscale;
        D[i*6 + 0] = x*x; D[i*6 + 1] = x*y;
        D[i*6 + 2] = y*y; D[i*6 + 3] = x;
        D[i*6 + 4] = y;   D[i*6 + 5] = 1;		
    }			

    /* scattering matrix: S = ~D * D (6x6)*/
    for (int i = 0; i < 6; i++) 
        for (int j = i; j < 6; j++) { /*upper triangle;*/
            double s = 0;
            for (int k = points.size(); k-- > 0; ) 
                s += D[k*6 + i] * D[k*6 + j];
            S[i*6 + j] = s;
        }
    for (int i = 1; i < 6; i++) /*lower triangle;*/
        for (int j = 0; j < i; j++) 	
            S[i*6 + j] = S[j*6 + i] ;
    
    /* fill constraint matrix C */
    for (int i = 0; i < 36 ; i++ ) C[i] = 0;
    C[12] =  2 ;//2x0 
    C[2 ] =  2 ;//0x2 
    C[7 ] = -1 ;//1x1

    /* find eigenvalues/vectors of scattering matrix; */
    double RT[36];	/* each row contains eigenvector; */
    JacobiEigens ( S, RT, eigvals, 6, 0 );
    /* create R and INVQ;*/
    double R[36];
    for (int i = 0; i < 6 ; i++) {
        eigvals[i] = sqrt(eigvals[i]);
        for ( int k = 0; k < 6; k++ ) {
            R[k*6 + i] = RT[i*6 + k];  /* R = orthogonal mat = transpose(RT);*/
            RT[i*6 + k] /= eigvals[i]; /* RT /= sqrt(eigenvalue) row-wise)*/
        }
    }
    /* create INVQ=R*(1/sqrt(eigenval))*RT;*/
    double INVQ[36];
    _MatrixMul(R, RT, 6, INVQ);

    /* create matrix INVQ*C*INVQ */
    double TMP1[36], TMP2[36];
    _MatrixMul(INVQ, C, 6, TMP1 );
    _MatrixMul(TMP1, INVQ, 6, TMP2 );
    
    /* find eigenvalues and vectors of INVQ*C*INVQ:*/
    JacobiEigens ( TMP2, EIGV, eigvals, 6, 0 );
    /* eigvals stores eigenvalues in descending order of abs(eigvals);*/
    /* search for a unique positive eigenvalue;*/
    int index = -1, count = 0;
    for (int i = 0 ; i < 3; i++ ) {
        if (eigvals[i] > 0) {
            index = i; // break;
            count++;
        }
    }
    /* only 3 eigenvalues must be non-zero 
    ** and only one of them must be positive;*/
    if ((count != 1) || (index == -1)) 
        return -1;
     
    /* eigenvector what we want: u = INVQ * v */
    double u[6]; 
    double *vec = &EIGV[index*6];
    for (int i = 0; i < 6 ; i++) {
        double s = 0;
        for (int k = 0; k < 6; k++) s += INVQ[i*6 + k] * vec[k];
        u[i] = s;
    }
    /* extract shape infos;*/
    PoseEllipse(u, einfo);
    /* recover original scale; center(0,1) and radii(2,3)*/
    for (int i = 0; i < 4; i++) einfo[i] *= scale;
    /* recover center */
    einfo[0] += offx; 
    einfo[1] += offy;
    return FitError(points, offx, offy, scale, u);
};
 
728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Linear Least Square Fitting: perpendicular offsets  (0) 2024.03.22
Cubic Spline Kernel  (1) 2024.03.12
Bilateral Filter  (0) 2024.02.18
영상에서 Impulse Noise 넣기  (2) 2023.02.09
Canny Edge: Non-maximal suppression  (0) 2023.01.11
Posted by helloktk
,

$\bf S$가 positive definite 행렬이고, $\bf C$는 대칭행렬일 때 아래의 일반화된 eigenvalue 문제를 푸는 방법을 알아보자. 
$$\bf  S u = \lambda C u$$

타원을 피팅하는 문제에서 이런 형식의 고유값 문제에 부딛히게 된다. 이 경우 $\bf S$는 scattering matrix이고, $\bf C$는 타원피팅에 걸리는 제한조건때문에 나온다. $\bf S$가 positive definite이므로  $\bf S$의 eigenvalues $\{\sigma_i > 0 \}$는 모두 0보다 크고, eigenvector를 이용하면 

$$ \bf S = R \Lambda R^T, ~~~~\Lambda=\text{diag}(\sigma_1, ...,\sigma_n)$$

처럼 분해할 수 있다. $\bf R$은 $\bf S$의 eigenvector를 열로 가지는 행렬로 orthogonal 행렬이다: $\bf R^{-1}=R^T$.

 

이제 $\bf S$의 제곱근 행렬을 $\bf Q, ~Q^2 =S$라면 

$$ \bf Q= R \Lambda^{1/2} R^T,~~~~\Lambda^{1/2} = \text{diag}( \sqrt{\sigma_1},...,\sqrt{\sigma_n})$$

임을 쉽게 확인할 수 있다. $\bf Q$을 이용하면 구하려는 고유값 문제는 

$$ \bf QQ u = \lambda C ~\to ~  Qu = \lambda Q^{-1} C Q Q^{-1}~~\to ~~ v = \lambda Q^{-1} C Q^{-1} v$$

이므로 $\bf Q^{-1} C Q^{-1}$의 고유값 문제 $(1/\lambda, \bf Qu)$로 단순화됨을 알 수 있다. $\bf Q$의 역행렬이 $\bf Q^{-1} = R \Lambda^{-1/2}R^T$임을 쉽게 체크할 수 있으므로 직접적으로 역행렬을 계산할 필요가 없어진다.

$$\bf \Lambda^{-1/2} = \text{diag}( 1/\sqrt{\sigma_1},...,1/\sqrt{\sigma_n})$$

728x90

'Mathematics' 카테고리의 다른 글

Fourier Interpolation  (0) 2024.03.20
수치적으로 보다 정밀한 이차방정식의 해  (0) 2024.02.23
열방정식의 Green function  (0) 2024.02.12
지구의 나이는?  (0) 2024.02.11
n 차원 공의 부피  (2) 2024.02.07
Posted by helloktk
,