질량 $m$인 무거운 용수철에 연결된 질량 $M$인 물체를 힘 $F$를 주어 당기고 있다. 용수철이 늘어난 길이는? 단, 용수철 상수는 $k$이다.

1. $\frac{2m+M}{2k(m+M)}F$

2. $\frac{m+2M)}{2k(m+M)}F$

3. $\frac{m+M}{k(2m+M)}F$

더보기

 

자연상태(길이 $=L$)의 용수철에 늘렸을 때 왼쪽에서 $x$만큼 떨어진 지점이 $f(x)$만큼으로 늘어난다면 미소부분 $dx$는 $dx +df$의 길이로 된다. 그리고 미소부분의 용수철 상수는 $k L/dx$이다 (용수철은 짧게 만들면 용수철 상수가 커진다).

용수철이 가속도 $a$로 움직인다면 늘어난 미소부분에 걸리는 장력이 왼쪽 부분과 물체 $M$을 가속시키므로 

$$ T= k\frac{L}{dx} df = kL \frac{df}{dx} =\Big( \frac{m}{L} x +M \Big)a  $$

을 얻는다. 따라서 

$$\frac{df}{dx}= \frac{a}{k} \left( \frac{m}{L^2} x + \frac{M}{L} \right)  ~\Longrightarrow~f(x) = \frac{a }{2k} \Big(m \Big(\frac{x}{L}\Big)^2 + 2M\frac{x}{L} \Big) $$ 

물체와 용수철에 작용하는 외력이 $F$이므로

$$a = \frac{F}{m+M}   \quad   \rightarrow~ \therefore f(L)= \frac{m + 2M}{2k(m+M)} F$$

확인: $m=0$인 경우 늘어난 길이는 $\frac{F}{k}$이어야 한다. 그리고 $m \gg M$인 경우는 $\frac{F}{2k}$이어야 한다.

 

https://kipl.tistory.com/427

 

무거운 용수철을 사용한 진자의 주기는?

용수철의 질량을 무시할 수 없는 경우 용수철 진자의 주기는 질량이 없는 경우보다 1. 길어진다. 2. 짧아진다. 3. 변함없다. 더보기 더보기 용수철에 매달린 물체의 속도가 $v$일 때 용수철이 가지

kipl.tistory.com

 

 
728x90
Posted by helloktk
,

용수철 상수는 $k$이고 질량이 $m$인 slinky가 있다. slinky의 한쪽을 매달면 자체의 무게 때문에 아래로 처지게 된다. 매달린 slinky의 맨 아래 부분은 중력을 받지 않을 때 위치에서 얼마나 내려왔을까?

1. $mg/k$

2. $mg/2k$

3. $mg/3k$

4. $mg/4k$

5. 정보가 부족

 

더보기

slinky의 꼭대기에서 $y$ (자연 상태에서 위쪽에서 잰 위치)만큼 떨어진 부분이 무게 때문에 $y+f(y)$만큼 내려왔다고 하자. 이 $f(y)$가 무게 때문에 추가로 얼마나 더 쳐지는가를 알려주는 함수다. 미소 부분 $dy$는 $dy+df$만큼 늘어난다. 이 미소 부분의 FBD을 그리면 위쪽으로는 $T$가 작용하고,  아래쪽으로는 미소길이의 무게와 $\lambda g df$와 $T+dT$가 작용한다($dT <0$). $T$는 미소길이가 늘어났기 때문에 생기는 장력으로, 미소길이에 해당하는 용수철 상수는 $k L /dy$다: 용수철의 직렬 연결로 생각하면 길이가 짧아질수록 용수철은 더 딱딱해진다. 따라서, 장력을 미소길이의 늘어난 정도로 표현하면

$$ T = \Big( k\frac{L}{dy} \Big) df = kL \frac{df}{dy}$$ 

그리고 $T$는 나머지 아래의 무게를 지탱하므로 (또는 미소길이 부분에 뉴턴 법칙을 적용해서 얻은 식 $dT = -\lambda g dy, ~T(0)=\lambda g L$을 적분하던지)

$$ T = (L- y)\lambda g$$

두 식을 연립하면 

$$ \frac{df}{dy} = \frac{\lambda g}{kL }(L-y)$$

을 얻는다. 이 식은 단위길이당 slinky가 늘어나는 비율이 $y=0$에서 제일 크고, $y=L$에서는 0임을 보여준다. 이식을 적분하면 전체적으로 늘어난 길이의 누적합은

$$ f(y) = \frac {\lambda g}{kL}\left( Ly - \frac{1}{2}y^2\right) = \frac{mg}{k}\left( \frac{y}{L} -\frac{y^2}{2L^2}\right) $$

따라서 

$$f(L) = \frac{mg}{2k}$$

추가로  slinky의 무게중심은 얼마나 내려갔을까?

 

 
 
728x90

'Physics > 역학' 카테고리의 다른 글

회전 각가속도는?  (0) 2022.02.07
막대가 벽에서 떨어지는 각도는?  (0) 2022.02.06
공중에 머무른 시간은?  (0) 2022.02.05
장력은?  (0) 2022.02.05
회전상태가 어떻게 변할까?  (0) 2022.02.05
Posted by helloktk
,