Parabola of Safety

Physics/역학 2022. 9. 16. 14:11

safetyparabola.nb
0.01MB

한 지점에서 일정한 속력으로 마구 쏘아대는 대공포가 있을 때 포탄이 도달할 수 없는 영역은 어떻게 찾을 수 있을까? 유한한 발사속력 때문에 도달할 수 있는 영역에는 분명히 한계가 있다.

 

공기 저항을 무시할 때 포탄이 그리는 궤적은 포물선이 된다. 따라서 포탄에 맞지 않으려면 포탄이 그리는 가능한 모든 포물선에 접하는 곡선 밖에 있어야 할 것이다. 발사 각도가 $ \theta$일 때, $v_0$ 속력으로 발사한 포탄이 그리는 포물선은

$$ y= \tan \theta x - \frac{1}{4H \cos ^2 \theta} x^2.$$

로 표시된다. 여기서 $H=v_0^2/2g$는 포탄이 도달할 수 있는 최고 높이다. 

 

발사 평면의 한 점 $(x_0, y_0)$에 포탄이 도달하기 위해서는 

$$ y_0 = \tan \theta x_0 + \frac{1}{4H \cos ^2 \theta} x_0^2$$

을 만족시키는 발사각 $\theta$가 있어야 한다. $1/\cos^2 \theta = 1+ \tan^2 \theta$이므로 위 식은 $\tan \theta$에 대한 이차식이므로 일반적으로 발사각이 2개가 있다. 만약 $(x_0, y_0)$가 포탄에 맞는 경계영역에 있다면 근이 하나가 있을 것이고, 포탄이 도달할 수 없는 영역에 있다면 근이 존재할 수 없다. 따라서 포탄이 도달할 수 있는 영역의 경계는 이 $\tan \theta$에 대한 이차방정식이 중근을 가질 때 $(x_0, y_0)$의 자취로 주어진다.

 

위 식을 정리하면 

$$ \frac{x_0^2}{4H}   \tan ^2  \theta + x_0 \tan \theta + \frac{x_0^2 }{4H} - y_0 = 0$$

이므로 판별식이 0일 조건은 

$$ x_0^2 - 4 \frac{x_0^2}{4H}  \Big(\frac{x_0^2}{4H} - y_0\Big) = 0 \quad \Rightarrow\quad y_0 = H - \frac{1 }{4H} x_0^2$$

로 쓰인다. 따라서 대공포로 부터 안전한 영역의 경계는 다음에 주어지는 포물선 바깥 영역이다.

$$\frac{ y}{H} =   1-  \frac{x^2}{R^2}  $$

여기서 $R=2H$는 $v_0$로 발사했을 때 최대 수평 도달거리를 나타낸다. 3차원 공간에서는 안전영역의 경계는 이 포물선을 주축에 대해서 회전시킨 포물면이 될 것이다.

 

 

 

중력이 일정하지 않고 $1/r^2$으로 변할 때 지상에 다시 떨어지는 물체의 경로는 지구의 중심을 한 초점으로 하는 타원의 일부분이 된다. 이 경우 물체 궤도의 envelope은 어떻게 주어질까?

 
728x90
Posted by helloktk
,

curve.nb
0.03MB

$(1,1)$에서 $(0,0)$까지를 연결하는 일차 곡선 ($y=x$), 이차 곡선 ($y=x^2$), 6차 곡선 ($y=x^6$), 사분원 ($y=1-\sqrt{1-x^2}$) 그리고 cycloid ($x=1-R(\theta-\sin\theta), y=1-R(1-\cos\theta)$) 위를 움직이는 물체의 운동을 mathematica를 사용해서 animation으로 표현하는 방법을 알아보자. 중력가속도는 $g=1$로 놓는다. 적절한 generalized coordinate를 선택해서 Euler-Lagrange equation을 이용하면 운동방정식을 쉽게 구할 수 있다.

(A)  곡선이 $y=f(x)$의 형태로 주어지는 경우 운동방정식은

$$\big[ 1+ (f')^2 \big] \ddot{x} + f' f''  \dot{x} ^2 + f'= 0 .$$

직선경로를 제외하면 운동방정식은 비선형이므로 mathematica의 $\tt NDSolve[]$을 이용해서 수치적으로 푼다.

(B) 원의 경우는 $x$ 좌표보다는 각변수를 이용하면 apparent singularity를 피할 수 있다. 이 경우 운동방정식은

$$ \ddot{\theta} = -\sin \theta,$$

로 주어진다. 

(C) cycloid는 곡선을 따라 움직이는 시간

$$t =\int \frac{ds}{v} = \int  \sqrt{\frac{1 + (dx/dy)^2}{2g(1-y)}}dy$$

을 최소로 만들어주는 곡선이다. cycloid는 다음과 같이 $R$ 변수와 각도 변수 $\theta$로 표현할 수 있다.

$$ 1-x=R(\theta-\sin \theta),~~y-1= -R(1-\cos \theta)$$

이 곡선이 $(0,0)$을 지나야 하는 조건에서 $R$과 그 때의 $\theta$ 값을 구할 수 있다. 먼저 $\theta$을 소거하면,

$$ R \cos \Big( \frac{1+\sqrt{2R-1}}{R} \Big) + 1 = R $$

을 얻고, 이 식의 근을 구하면 $R$ 값이 정해진다. 또한, $$1=R(\theta- \sin \theta)$$을 풀어서 $(0,0)$에 도달할 때 $\theta=\theta_0$ 값을 얻을 수 있다. 그리고 시간과 $\theta$ 변수의 관계는 위의 표현을 적분에 대입하면 

$$t = \sqrt{ \frac{R}{g} }  \theta $$

로 주어짐을 알 수 있다. 이는 사이클로이드가 일정하게 굴러가는 바퀴의 한 점이 그리는 자취이기 때문이다.

 

아래는 5가지 경우의 곡선 각각에서 운동을 보여주는 mathematica 코드다. 곡선의 모양에 따라 바닥에 도착하는 시간이 다름을 알 수 있다. 출발 높이가 $H$일 때 걸리는 시간은 $\sqrt{H/g}$ 단위로 

직선: $t_1=\int_0^1{ \frac{dy}{\sqrt{1-y}}} = 2$

2차 곡선: $t_2=\int_0^1\sqrt{ \frac{1+4y}{8y(1-y)}}dy= 1.86336$

6차 곡선: $t_6=\int_0^1 \sqrt{\frac{1+36y^{5/3}}{72y^{5/3}(1-y)}}dy=1.90954$

4분원: $t_c=\int_0^{\pi/2} \frac{d \theta}{\sqrt{2\sin \theta }}=1.85407$

cycloid: $t_0= \sqrt{R}\theta_0 = 1.82568$

Cyan: 직선, Blue: 2차 곡선, Magenta: 6차 곡선, Black: 원, Red: cycloid

728x90

'Physics > 역학' 카테고리의 다른 글

공기 저항이 있을 때 포물체의 Animation  (0) 2022.09.18
Parabola of Safety  (0) 2022.09.16
돌리기가 제일 힘든 축은?  (0) 2022.08.17
주기는 어떻게 변할까?  (0) 2022.03.22
지지대를 치우는 순간 가속도는?  (0) 2022.03.19
Posted by helloktk
,