$$I = \int_1^\infty \frac{\text{arccosh}(x) }{1+x^2} dx=\frac{ \pi}{2} \log ( 1 + \sqrt{2})$$
$\text{arccosh}(x) = \log\left (x+ \sqrt{x^2-1}\right)$이므로 다음 함수의 contour 적분을 고려하자.
$$ f(z) = \frac{\log ^2 \left( z + \sqrt{ z^2-1} \right)}{1+z^2} $$
$\sqrt{z^2-1}$의 branch point가 $z= \pm1$이고, $\log (z)$의 branch point가 $z=0$이므로 $\log \left(z+ \sqrt{z^2 -1}\right)$의 branch point 는 $z=1$이다. 그리고 $\log(z)$의 principal branch을 고려하면 $f(z)$의 cut line은 $ \text{z} \le 1$인 실수축을 잡으면 된다. 이 경우 위상은$$ -\pi \le \arg(z), ~\arg(z+i), ~\arg(z-i) \le \pi$$ 로 선택하자.
$z= \pm i$이 $f(z)$의 simple pole이고
$$ \text{Res} (i) = \frac{ \left( \log \left( 1+ \sqrt{2}\right) + i\frac{\pi}{2} \right)^2 }{2i} \\ \text{Res}(-i) = \frac{ \left( \log \left( 1+ \sqrt{2}\right) - i\frac{\pi}{2} \right)^2 }{-2i} \\ \to ~~\sum \text{Res}(z_k) = \pi \log \left ( 1+ \sqrt{2} \right) $$
경로 $C_1$에서
$$ z= x e^{i \pi}~~(x:\infty \to 1) \\ z+1 = (x-1)^{i \pi},~z-1= (x+1) e^{ i\pi} \\ \log\left (z+ \sqrt{z^2-1}\right)= \log \left( x+ \sqrt{x^2 -1} \right) + i \pi \\ \int_{C_1} = \int_\infty^1 \left ( \log \left (x+ \sqrt{x^2-1} \right) + i \pi \right )^2 (-dx) = \int_1^\infty \left( \log \left(x + \sqrt{x^2-1} \right) + i \pi \right)^2 dx $$
경로 $C_6$에서
$$ z= x e^{- i \pi}~~(x:1 \to \infty) \\ z+1 = (x-1)^{-i \pi},~z-1= (x+1) e^{ -i\pi} \\ \log \left(z+ \sqrt{z^2-1}\right)= \log \left( x+ \sqrt{x^2 -1} \right) - i \pi \\ \int_{C_6} = \int_1^\infty \left ( \log \left(x+ \sqrt{x^2-1} \right) - i \pi \right )^2 (-dx) = -\int_1^\infty \left( \log \left(x + \sqrt{x^2-1} \right) - i \pi \right)^2 dx $$
따라서 $$ \int_{C_1 + C_6} = 4\pi i I$$
경로 $C_2$에서
$$ z= x e^{i \pi}~~(x:1\to 0) \\ z+1 = (1-x)^{i 0 },~z-1= (1+x) e^{ i\pi} \\ \log (z+ \sqrt{z^2-1})= \log ( - x+ i \sqrt{1-x^2 } )\\ \int_{C_2} = \int_1^0 \log ^2 \left (-x+ i \sqrt{1-x^2} \right ) (-dx) = \int_0^1 \log ^2 \left (-x + i\sqrt{1-x^2} \right) dx $$
경로 $C_5$에서
$$ z= x e^{i \pi}~~(x:0\to 1) \\ z+1 = (1-x)^{i 0 },~z-1= (1+x) e^{ -i\pi} \\ \log (z+ \sqrt{z^2-1})= \log ( - x - i \sqrt{1-x^2 } )\\ \int_{C_5} = \int_0^1 \log ^2\left (-x - i \sqrt{1-x^2} \right ) (-dx) = - \int_0^1 \log^2 \left (-x - i\sqrt{1-x^2} \right) dx $$
경로 $C_3$에서
$$ z= x e^{i 0 }~~(x:0\to 1) \\ z+1 = (1-x)^{i 0 },~z-1= (1+x) e^{ i\pi} \\ \log \left(z+ \sqrt{z^2-1}\right)= \log \left( x+ i \sqrt{1-x^2 }\right )\\ \int_{C_3} = \int_0^1 \log^2 \left (x+ i \sqrt{1-x^2} \right ) dx $$
경로 $C_4$에서
$$ z= x e^{i 0}~~(x:1\to 0) \\ z+1 = (1-x)^{i 0 },~z-1= (1+x) e^{ -i\pi} \\ \log \left(z+ \sqrt{z^2-1}\right)= \log \left( x - i \sqrt{1-x^2 } \right)\\ \int_{C_4} = -\int_0^1 \log ^2 \left (x - i \sqrt{1-x^2} \right ) dx $$
그런데 $0 \le x \le 1$에서 $$\left| -x + i \sqrt{1-x^2}\right|=\left | -x- i \sqrt{1-x^2} \right| = \left| x - i \sqrt{1-x^2}\right| = \left| x + i \sqrt{1-x^2}\right| =1\\ \arg\left( -x + i \sqrt{1-x^2}\right)=-\arg\left( -x- i \sqrt{1-x^2} \right) \\ \arg\left( x - i \sqrt{1-x^2}\right) =-\arg \left( x + i \sqrt{1-x^2}\right)$$이므로 $$ \int_{C_2+ C_5} = 0, \quad \int_{C_3+C_4} = 0 $$이다. $C_\infty$와 branch point을 감싸는 $C_\epsilon$에서 적분은 기여가 없으므로 residue 정리에 의해서
$$ \oint f(z) dz = 2\pi i \times \sum _k \text{Res} (z_k) \\ \to \quad 4\pi i I = 2\pi i \times \pi \log(1+\sqrt{2}) \\ I = \frac{\pi}{2} \log (1+ \sqrt{2})$$
'Mathematics' 카테고리의 다른 글
Integration along a branch cut-043 (0) | 2024.12.16 |
---|---|
Integrate [ Log(1-x)/x, {x, 0, 1} ] (0) | 2024.12.04 |
Shokhotski-Plemelj theorem (0) | 2024.11.26 |
Integration along a branch cut-041 (0) | 2024.11.25 |
Integration along a branch cut-040 (0) | 2024.11.24 |