728x90

comb 함수: 일정한  간격($T$)으로 주어진 message를 샘플링하는 함수.

$$\text{comb}_T(t) := \sum_{n=-\infty}^{\infty} \delta (t- nT)$$

주기가 $T$인 함수다: 

$$ \text{comb}_T(t) = \text{comb}_T(t+T)$$

따라서 Fouries series 전개가 가능하다.

$$\text{comb}_T(t) = \sum_{n=-\infty}^{ \infty}   c_n e^{i 2\pi n t /T}$$

계수 $c_n$은?

\begin{align} c_n :=&\frac{1}{T} \int_{-T/2}^{T/2} \text{comb}_T(t) e^{-i 2\pi n t /T}dt \\ =&  \frac{1}{T}\int_{-T/2}^{T/2} \delta (t) e^{ -i 2\pi n t/T} dt  \\ =&\frac{1}{T} e^{-i 2\pi n (0) /T } = \frac{1}{T}.\end{align}

따라서, $\text{comb}_T(t)$의 Fourier series 전개는 

$$\text{comb}_T(t) = \frac{1}{T} \sum_{n = -\infty}^{\infty} e^{i2\pi  n t/T}.$$

frequency domain에서 delta 함수의 역 Fourier transform은 정의에 의해서

$$ {\cal F}^{-1} [\delta (f-f_0)] = \int \delta (f-f_0) e^{i 2\pi t f }df = e^{i 2\pi t f_0}$$

그럼 $\text{comb}_T(t)$의 Fourier transform은 어떻게 표현되는가?

\begin{align} {\cal F}[\text{comb}_T(t)]=& \frac{1}{T} \sum {\cal F}[ e^{i2\pi n t/T}] \\  =& \frac{1}{T} \sum {\cal F}[ {\cal F}^{-1} [ \delta (f - n/T)]] \\ =& \frac{1}{T} \sum_{n = -\infty}^{\infty} \delta(f - n/T).\end{align} $\text{comb}$ 함수의 Fourier 변환은 frequency domain에서 $\text{comb}$ 함수이고 (up to constant factor),  time domain에서 주기가 $T$일 때 frequency domain에서는 $ 1/T$의 주기를 가진다.

주어진 message $m(t)$에서 일정한 간격 $T$로 샘플링된 message $m_s(t)$는 $\text{comb}$ 함수를 이용하면

$$m_s (t) : = m(t) \text{comb}_T(t) = \sum m(nT) \delta (t- nT)$$

로 표현된다.

양변에 Fourier transform을 적용하면,

\begin{align} M_s(f) = {\cal F} [m_s ] =& {\cal F}[m(t) \text{comb}_T(t)]= {\cal F}[m] * {\cal F}[\text{comb}_T]  \\  =& \frac{1}{T} \sum \int \delta(f' - n /T) M(f- f') df' \\ =& \frac{1}{T} \sum_{n=- \infty}^{\infty}  M(f - n/T) . \end{align}

따라서 message의 spectrum이 band-limited이고, $\text{band-width} \le \frac{1}{2} f_s = \frac{1}{2T}$인 조건을 만족하면 샘플링된 데이터를 이용해서 원 신호를 복원할 수 있다.

이 경우에 low-pass filter 

$$ H(f/f_s) := T \cdot \text{rect}(f/f_s)=\left\{ \begin{array}{ll} T ,& |f/f_s| < 1/2 \\ 0 , & |f/f_s| >1/2,\end{array}\right. $$

을 sampled massage의 Fourier transform에 곱해주면, 원 message의 Fourier transform을 얻는다:

$$ M(f) = H(f) M_s(f).$$

그런데 $M_s(f)$는 frequency domain에서 주기가 $f_s = 1/T$인 주기함수이므로 Fourier series로 표현할 수 있다:($\text{comb}_T$ 함수와 같은 방식으로 하면 계수를 쉽게 찾을 수 있다: Poisson summation formula)

$$M_s(f) = \frac{1}{T}\sum M(f- n f_s ) = \sum_{-\infty}^\infty   m(nT) e^{-i 2\pi nf T}$$

따라서, 

\begin{align} M(f) = & H(f/f_s)   M_s(f) \\ =& H(f/f_s)  \sum  m(nT) e^{-i 2\pi nfT} \\ =& \sum m(nT) \Big(\text{rect}(f/f_s )T  e^{-i 2\pi nTf} \Big) \\=& \sum m(nT) {\cal F} \left[  \text{sinc}  \left( \pi  \frac{t-nT}{T} \right) \right]\end{align}

이므로 양변에 역 Fourier transform을 하면 sampled 된 message $\{m(nT)|n\in Z\}$를 이용해서 원 message를 복원할 수 있는 식을 얻을 수 있다(Whittaker-Shannon interpolation):

$$m(t) = \sum_{n=-\infty}^{\infty}  m(nT) \,\, \text{sinc}\left(  \pi \frac{t-nT}{T} \right) .$$

 

'Image Recognition > Fundamental' 카테고리의 다른 글

Orientation 추정  (0) 2021.11.30
Poisson Image Editing  (0) 2021.08.03
Sampling Theorem  (0) 2021.05.12
Lanczos Resampling  (0) 2021.05.08
Interpolation Kernels  (0) 2021.05.05
Fowler Angle  (0) 2021.04.05
Posted by helloktk

댓글을 달아 주세요