segmentation result

  1. gradient 대신 negate시킨 distance map을 사용한다.
  2. 경계영역 처리를 보완해야 한다.
  3. distance-map을 충분히 smooth하게 만들어야 한다: mean-filter 반복 적용.
  4. 참고: https://kipl.tistory.com/66의 구현보다 단순하지만 성능은 떨어진다.
#define insideROI(x, y) ((x) >= 0 && (x) < w && (y) >= 0 && (y) < h)
#define BACKGND 0xFF
int watershed(float *distMap, int w, int h, int *rgnMap) {
    const int xend = w - 1, yend = h - 1;
    const int nx[] =  {-1, 0, 1, -1, 0, 1, -1, 0, 1};
    const int ny[] =  {-1, -1, -1, 0, 0, 0, 1, 1, 1};
    // processing image;
    std::vector<float>   wbuffer(w * h);
    std::vector<float* > procImg(h); 
    for (int y = 0; y < h; y++)
        procImg[y] = &wbuffer[y * w];
        
    // presmooth; 10 iterations;
    mean_filter(distMap, w, h, 10, procImg); 

    // 입력 영상에서 경계는 global maximum으로 설정;
    for (int y = 0; y < h; y++ ) procImg[y][0] = procImg[y][xend] = BACKGND;
    for (int x = 0; x < w; x++ ) procImg[0][x] = procImg[yend][x] = BACKGND;
    // find local minima for each pixel;
    int minCnt = 1;
    for (int y = 0, pos = 0; y < h; y++) {
        for (int x = 0; x < w; x++, pos++) {
            float minVal = procImg[y][x];
            if (minVal == BACKGND) {
                rgnMap[pos] = 1;	// background(white);
                continue;
            }
            int minIdx = 4; //current position;
            for (int k = 0; k < 9; k++) {
                int xx = x + nx[k], yy = y + ny[k];
                if (insideROI(xx, yy) && procImg[yy][xx] <= minVal) {
                    minVal = procImg[yy][xx];
                    minIdx = k;
                }
            }
            if (minIdx == 4) rgnMap[pos] = ++minCnt; // center(x, y) is a new local minimum;
            else             rgnMap[pos] = -minIdx;  // direction of local-min =  "-(dir)"
        }
    }
    // follow gradient downhill for each pixel;
    // reset rgnMap to have the id's of local minimum connected with current pixel;
    for (int y = 1, pos = y * w; y < yend; y++ ) {
        pos++;
        for (int x = 1; x < xend; x++, pos++ ) {
            int minpos = pos;
            while ( rgnMap[minpos] <= 0 ) { //it is not a local minimum.
                switch ( rgnMap[minpos] ) {
                case  0: minpos += -w - 1; break; // top-lef = downhill direction;
                case -1: minpos += -w;	   break; // top
                case -2: minpos += -w + 1; break; // top-right;
                case -3: minpos--;         break; // left;
                case -5: minpos++;         break; // right;
                case -6: minpos += w - 1;  break; // bot-left;
                case -7: minpos += w;      break; // bot;
                case -8: minpos += w + 1;  break; // bot-right;
                }
            }
            // speed-up: use a stack to record downhill path.
            //assign the id of a local min connected with current pixel;
            rgnMap[pos] = rgnMap[minpos]; 
        }
        pos++;
    }
    // rgnMap는 각 픽셀과 연결되는 국소점의 id을 알려주는 lookup table이다;
    return ( minCnt );
}
728x90

'Image Recognition' 카테고리의 다른 글

Anisotropic Diffusion Filter (2)  (0) 2024.02.23
Edge Preserving Smoothing  (0) 2024.02.14
Local Ridge Orientation  (0) 2021.02.21
Contrast Limited Adaptive Histogram Equalization (CLAHE)  (3) 2021.02.15
Fixed-Point Bicubic Interpolation  (1) 2021.01.19
,