이미지를 균일한 컬러 영역으로 분할하는 것은 압축이나 segmentation 등에 매우 유용하다. 4개의 child node 가운데 parent node와 차이가 많이 나지 않는 것은  부분적으로 parent node에 merge 시키는 방법도 있다.

#include "QuadTree.h"
#include <queue>
#include <math.h>
QuadNode::QuadNode() {
    for (int i = 0; i < 4; i++) children[i] = NULL;
    rect = CRect(0, 0, 0, 0);
    hasChildren = false;
    mean = -1;
    stdev = 0;
}
QuadNode::QuadNode(CRect& rc) {
    for (int i = 0; i < 4; i++) children[i] = NULL;
    rect = rc;
    hasChildren = false;
    mean = -1;
    stdev = 0;
}
void QuadNode::Subdivide() {
    hasChildren = true;
    children[0] = new QuadNode(CRect(rect.TopLeft(), rect.CenterPoint()));
    children[1] = new QuadNode(CRect(rect.left, rect.CenterPoint().y, rect.CenterPoint().x, rect.bottom));
    children[2] = new QuadNode(CRect(rect.CenterPoint(), rect.BottomRight()));
    children[3] = new QuadNode(CRect(rect.CenterPoint().x, rect.top, rect.right, rect.CenterPoint().y));
}
// quadtree에 할당된 메모리를 정리함; root node는 별도로 정리.
void QuadNode::Clear() {
    if (this->hasChildren)
        for (int i = 0; i < 4; i++)
            if (children[i]) {
                children[i]->Clear();
                delete children[i];
            }
}
QuadTree::QuadTree(CRect rc, CRaster& image) {
    rect = rc & image.GetRect(); // rect는 이미지 안에.
    raster = image;
}
void QuadTree::Build() {
    root = new QuadNode();
    root->rect = this->rect;
    std::queue<QuadNode *> TreeQueue;
    TreeQueue.push(root);
    while (!TreeQueue.empty()) {
        QuadNode* node = TreeQueue.front();
        TreeQueue.pop();
        CRect rc = node->rect;
        if ((rc.Width() > 2 && rc.Height() > 2) && !IsHomogenous(node)) {
            node->Subdivide();
            for (int i = 0; i < 4; i++) 
                TreeQueue.push(node->children[i]);
        }
    }
}
// subdivision 조건: 편차, 최대-최소 차이등의 criteria를 사용할 수 있다.
#define THRESH 15
bool QuadTree::IsHomogenous(QuadNode* node) {
    CRect rc = node->rect;
    double s = 0, ss = 0;
    int minval = 255, maxval = 0;
    for (int y = rc.top; y < rc.bottom; y++) {
        BYTE *p = (BYTE *)raster.GetLinePtr(y) + rc.left;
        for (int x = rc.left; x < rc.right; x++) {
            int a = *p++; 
            s += a; ss += a * a;
            maxval = max(maxval, a); minval = min(minval, a);
        }
    }
    int n = rc.Width() * rc.Height();
    node->mean = s / n;
    node->stdev = sqrt((ss - s * s / n) / n);
    return (node->stdev >= THRESH) ? false: true;
    //return (maxval - minval) > THRESH ? false: true;
};
// leaf node를 찾아 list에 넣음;
void QuadTree::FindLeaf(QuadNode* node) {
    if (node == NULL) return;
    if (!node->hasChildren) {
        LeafList.push_back(node);
        return;
    }
    for (int i = 0; i < 4; i++) 
        FindLeaf(node->children[i]);
}

사용 예:

더보기
void test_main(CRaster& raster, CRaster& out) {
    ASSERT(raster.GetBPP() == 8);  // gray input;
    QuadTree qtree(raster.GetRect(), raster);
    qtree.Build();
    qtree.FindLeaf(qtree.root);
    out.SetDimensions(raster.GetSize(), 24); //RGB-color;
    // segment image;
    for (int i = 0; i < qtree.LeafList.size(); i++) {
        QuadNode *node = qtree.LeafList[i];
        int a = int(node->mean + .5);
        FillRegion(out, node->rect, RGB(a, a, a));  //gray average;
        // draw rectangle with red color;
        DrawRectangle(out, node->rect, RGB(0, 0, 0xFF));
    }
    qtree.root->Clear();
    delete qtree.root;
}
728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Moment-preserving Thresholding  (0) 2022.05.29
Minimum Cross Entropy Thresholding  (0) 2022.05.29
Harris Corner Detector  (0) 2022.04.07
Valley emphasis Otsu threshold  (0) 2022.02.23
Image rotation by FFT  (0) 2022.02.18
,