Harris response:
$$ R=\text{Det}(M)-k\text{Trace}(M)^{2}~\quad k \in [0.04,0.06]$$
$$M = \begin{pmatrix}\sum w(x) I_x^2 & \sum w(x) I_x I_y\\ \sum w(x) I_x I_y & \sum w(x) I_y ^2 \end{pmatrix}$$
참고: http://www.ipol.im/pub/art/2018/229/article_lr.pdf
double PI = 4.0 * atan(1.0);
double Gaussian(double x, double y, double sigma) {
double sigma2 = sigma * sigma;
double t = (x * x + y * y) / (2 * sigma2);
double n = 1.0 / (2.0 * PI * sigma2);
return n * exp( -t );
};
struct Corner {
double x, y;
double strength;
int flag;
};
int HarrisCornerDetector(BYTE *img, int w, int h,
double sigma/*=1.2*/, double kvalue/*=0.04~0.06*/,
double minMeasure/*=1e-1*/,
std::vector<Corner>& corners)
{
// Sobel gradient 3x3
const int nn[] = { -w - 1, -w, -w + 1, -1, 0, 1, w - 1, w, w + 1}; // 3x3 window
const int sobelX[] = { -1, 0, 1, -2, 0, 2, -1, 0, 1};
const int sobelY[] = { -1, -2, -1, 0, 0, 0, 1, 2, 1};
const int xmax = w - 1, ymax = h - 1;
std::vector<double> Gx(w * h, 0);
std::vector<double> Gy(w * h, 0);
for (int y = 1, pos = w; y < ymax; y++) { // pos = w; starting address;
pos++; //skip x=0;
for (int x = 1; x < xmax; x++, pos++) {
double sx = 0, sy = 0;
for (int k = 0; k < 9; k++) {
int v = img[pos + nn[k]];
sx += sobelX[k] * v;
sy += sobelY[k] * v;
}
Gx[pos] = sx / (4 * 255);
Gy[pos] = sy / (4 * 255);
}
pos++; // skip x=xmax;
}
// precompute the coefficients of the Gaussian filter
const int radius = int(2 * sigma);
const int window = 1 + 2 * radius;
std::vector<double> gFilter(window * window);
for (int j = -radius, pos = 0; j <= radius; j++)
for (int i = -radius; i <= radius; i++, pos++)
gFilter[pos] = Gaussian(i, j, sigma);
// compute the Harris measure for each pixel of the image
std::vector<double> harrismap(w * h, 0);
double hmax = 0;
for (int y = 0, pos = 0; y < h; y++) {
for (int x = 0; x < w; x++, pos++) {
// Convolve gradient with Gaussian filter:
double filtersum = 0, sxx = 0, syy = 0, sxy = 0;
for (int yk = y - radius, wpos = 0; yk <= y + radius; yk++) {
for (int xk = x - radius; xk <= x + radius; xk++, wpos++) {
if (yk < 0 || yk >= h) continue;
if (xk < 0 || xk >= w) continue;
// Gaussian weight
double gauss = gFilter[wpos];
filtersum += gauss;
// convolution;
int loc = yk * w + xk; //image location;
sxx += gauss * Gx[loc] * Gx[loc];
syy += gauss * Gy[loc] * Gy[loc];
sxy += gauss * Gx[loc] * Gy[loc];
}
}
sxx /= filtersum;
syy /= filtersum;
sxy /= filtersum;
// Harris corner measure = Det(M) - kvalue.(Trace(M))^2
double hmeasure = sxx * syy - sxy * sxy - kvalue * (sxx + syy) * (sxx + syy);
if (hmeasure <= 0) continue;
if (hmeasure > hmax) hmax = hmeasure;
harrismap[pos] = hmeasure;
}
}
// log scale
double scale = 255 / log(1 + hmax);
for (int pos = w * h; pos-- > 0;)
harrismap[pos] = scale * log(1 + harrismap[pos]);
// Nonmaximal suppression: keep only local maxima;
minMeasure *= 255; //255 = the maximum value of Harris measure(in log scale);
const int nn8[] = { -w - 1, -w, -w + 1, 1, w + 1, w, w - 1, -1}; // 8-neighbors;
for (int y = 1, pos = w; y < ymax; y++) {
pos++; //skip x=0;
for (int x = 1; x < xmax; x++, pos++) {
// thresholding: Harris measure > epsilon
double hmeasure = harrismap[pos];
if (hmeasure <= minMeasure) continue;
bool isLocalMax = true;
for (int k = 0; k < 8; k++) {
double hk = harrismap[pos + nn8[k]];
if (hk >= hmeasure) {
isLocalMax = false;
break;
}
}
if (isLocalMax) {
Corner c;
c.x = x, c.y = y, c.strength = hmeasure, c.flag = 1;
corners.push_back(c);
}
}
pos++; //skip x=w-1;
}
// remove corners too close to each other: keep the highest measure
double minDistance = 8;
std::vector<Corner>::iterator iter = corners.begin();
while (iter != corners.end()) {
for (int i = 0; i < corners.size(); i++) {
Corner& c1 = corners[i];
if (c1.flag == 0) continue;
if ((c1.x == iter->x && c1.y == iter->y) ) continue;
if (sqrt((c1.x-iter->x)*(c1.x-iter->x) + (c1.y-iter->y)*(c1.y-iter->y)) > minDistance)
continue;
if (c1.strength < iter->strength) continue;
iter->flag = 0; // iter = corners.erase(iter); berased = true;
break;
}
iter++;
}
return 1;
};
728x90
'Image Recognition > Fundamental' 카테고리의 다른 글
Minimum Cross Entropy Thresholding (0) | 2022.05.29 |
---|---|
Quadtree Segmentation (0) | 2022.05.21 |
Valley emphasis Otsu threshold (0) | 2022.02.23 |
Image rotation by FFT (0) | 2022.02.18 |
FFT를 이용한 영상의 미분 (0) | 2022.02.12 |