이미지의 히스토그램을 이용하여 전경과 배경을 분리하는 이진화는 가우시안 mixture model과 EM 알고리즘을 적용하기에 좋은 예다. 히스토그램에는 전경에 해당하는 픽셀 분포와 배경에 해당하는 픽셀 분포가 혼합되어 있다. 이를 두 가우시안의 혼합으로 모델링하고 EM 알고리즘을 사용해서 mixing parameter(πa), 각 클래스의 평균(μa) 과 표준편차(σa)를 추정한다. N개의 Gaussian mixture일 때,

Mixing parameter가 πa (a=1, 2,..., nclass)일 때 특정 픽셀 (=xi)이 클래스 a 소속일 posterior 확률은

 
로 쓸 수 있다. posterior 정보를 이용하면 mixing parameter, 평균 그리고 분산은 다음 식으로 주어진다. H[i]=Hi는 이미지의 히스토그램을 나타내고, bin 인덱스 i는 픽셀 값 xi를 나타낸다:
 

   

 

 

log-likelihood:

// mixing 클래스를 기술하는 클래스;
struct mixclass {
    double prob ;               // mixing parameter;
    double mean ;               // mean
    double var ;                // variance;
};
// N(mean, var);

double gauss1d(double x, double mean, double var)

더보기

 {

   double a = 1 / sqrt(2*M_PI * var);
    double b = 0.5*(x-mean)*(x-mean)/var;
    return a * exp(-b);
};

// posterior; Pr(Zi = c | xi, Theta);
// 주어진 관측값 x이 클래스 cid에 속할 posterior;
double classprob(double x, int nclass, mixclass*  mclass, int cid)

더보기
{
    double marginal = 0;
    for (int c = 0; c < nclass; c++) {
        marginal += mclass[c].prob * gauss1d(x, mclass[c].mean, mclass[c].var) ;
    };
    // Bayes 공식 = prior * PDF;
    return mclass[cid].prob * gauss1d(x, mclass[cid].mean, mclass[cid].var) / marginal;
}
// posterior (class_prob[i][c]) table 만들기;
void update_class_prob(int nbins, double * hist, int nclass, mixclass* mclass, double ** class_prob) 
더보기
{
        for (int i = 0; i < nbins; i++) {
            for (int c = 0; c < nclass; c++) {
                class_prob[i][c] = classprob(double(i), nclass, mclass, c);
            }
        }
};
// E-step;  pi[c] = mixture parameter for class c;
// posterior를 이용해서 특정클래스의 mixing 정도를 계산;==> next prior;
void update_prob(int nbins, double * hist, int nclass, mixclass* mclass, double ** class_prob) 
더보기
{
        double ntot = 0;
        for (int i = 0; i < nbins; i++) ntot += hist[i];
        for (int c = 0; c < nclass; c++) {
            double s = 0;
            for (int i = 0; i < nbins; i++) s += hist[i] * class_prob[i][c];
            mclass[c].prob = s / ntot;
        }
};
// mu[c]; 클래스의 평균;
void update_mean(int nbins, double * hist, int nclass, mixclass* mclass,  double ** class_prob)
더보기
{
        double ntot = 0;
        for (int i=0; i<nbins; i++) ntot += hist[i];
        for (int c = 0; c < nclass; c++) {
            double sx = 0.0;
            for (int i = 0; i < nbins; i++) sx += hist[i] * i * class_prob[i][c];
            mclass[c].mean = sx / (ntot * mclass[c].prob);
        }
};
// var[c]; 클래스의 분산;
void update_var(int nbins, double * hist, int nclass, mixclass* mclass, double ** class_prob) 
더보기
{
    double ntot = 0;
    for (int i = 0; i < nbins; i++) ntot += hist[i];
    for (int c = 0; c < nclass; c++) {
        double m= mclass[c].mean ;
        double sxx = 0;
        for (int i = 0; i < nbins; i++) sxx += hist[i] * SQR(i - m) * class_prob[i][c];
        mclass[c].var = sxx / (ntot * mclass[c].prob);
    }
};
// M-step; 
void update_parameters(int nbins, double * hist, int nclass, mixclass* mclass, double ** class_prob) 
더보기

{

    // mixture 파라미터를 갱신;
    update_prob(nbins, hist, nclass, mclass, class_prob);
    // 각 클래스의 평균을 갱신;
    update_mean(nbins, hist, nclass, mclass, class_prob);
    // 각 클래스의 분산을 갱신;
    update_var(nbins, hist, nclass, mclass, class_prob);
};
// initialization;
void init_em(int nbins, double * hist, int nclass, mixclass* mclass)
더보기

{

        srand(unsigned(time(0)));
        double mean1 = 0, var1 = 0, ntot = 0;
        for (int k = 0; k < nbins; k++) ntot += hist[k];
        for (int i = 0; i < nbins; i++) mean1 += hist[i] * i;
        mean1 /= ntot;
        for (int i = 0; i < nbins; i++) var1 += hist[i] * SQR(i - mean1);
        var1 /= ntot;
        for (int c = 0; c < nclass; c++) {
            mclass[c].prob = 1.0 / nclass;          //same mixing parameter;
            mclass[c].mean = rand() % nbins; // random mean;
            mclass[c].var = var1;                     // same standard deviation;
        }
};
// calculate log-likelihood;
double mixLLK(int nclass, mixclass* mclass) 
더보기
{
    double llk = 0;
    for (int i = 0; i < nbins; i++) {
        double s = 0 ;
        for (int c = 0; c < nclass; c++) 
            s += mclass[c].prob * gauss1d(double(i), mclass[c].mean, mclass[c].var);
        llk+= log(s);
    }
    return llk;
};
// check termination condition;
bool check_tol(double llk, double llk_p, double  eps) 
더보기
{
    return (fabs(llk - llk_p) / fabs(llk)) > eps;
};
// 입력은 이미지의 히스토그램;
double em(int nbins/*=256*/, double hist[/*256*/],
    int nclass/*=2*/, mixclass mclass[/*=2*/], double eps/*=1.e-10*/) {
    double llk = 0, prev_llk = 0;
    // allocate memory buffers for the posterior information;
    double ** class_prob = (double**)malloc(sizeof(double*) * nbins);
    class_prob[0] = (double*)malloc(sizeof(double) * nbins * nclass) ;
    for (int i = 1; i < nbins; i++) class_prob[i] = class_prob[i - 1] + nclass;

    // initialization of algorithm;
    init_em(nbins, hist, nclass, mclass);
    //
    do {
        prev_llk = llk;
        // E-step ;
        update_class_prob(nbins, hist, nclass, mclass, class_prob);
        // M-step;
        update_parameters(nbins, hist, nclass, mclass, class_prob);
        llk = mixLLK(nclass, mclass);
        // TRACE("mean1=%f, mean2=%f\n", mclass[0].mean, mclass[1].mean);
        TRACE("log-likelihood=%e\n", llk);
    } while (!check_tol(llk, prev_llk, eps));
    // clean ;
    free(class_prob[0]);
    free(class_prob) ;
    return llk;
};
  • 적색 : 히스토그램 
  • 청색, 녹색 : posterior(membership); 
  • Otsu 알고리즘을 쓰는 경우에 100에서 threshold 값이 결정되고 EM은 110 정도임.
  • Otsu Threshold source code: kipl.tistory.com/17

 

사용자 삽입 이미지

 

728x90

'Image Recognition' 카테고리의 다른 글

KMeans Algorithm  (0) 2008.07.19
Robust Line Fitting  (0) 2008.07.08
EM Algorithm: Line Fitting  (0) 2008.06.29
Gaussian Mixture Model  (2) 2008.06.07
Rasterizing Voronoi Diagram  (0) 2008.05.26
Posted by helloktk
,

아래 그림을 보면 우리는 데이터를 연결하는 두 개의 직선을 생각할 수 있을 것이다.  그럼 두 개의 직선을 어떻게 얻을 것인가? 물론, ICA(independent component analysis)를 이용하는 것이 한 가지 방법이 될 것이다. 여기서는 EM 알고리즘을 이용하여서 두 개의 직선을 기술하는 기울기와 $y$-절편의 값을 구하는 방법을 알아보자.

 

 

사용자 삽입 이미지


직선을 각각 $y=a_1 x + b_1$, $y = a_2  x + b_2$라고 하면, $(a_1, b_1)$, $(a_2, b_2)$를 구하는 문제이다. 만약 각각의 data가 에러가 수반되는 측정에 의해서 얻어졌다고 하자. 에러 분포가 정규분포를 따른다면(여기서는 두 개의 모델 모두 갖은 표준편차를 갖는다고 가정했다) $i$-번째의 데이터가 각각의 직선 모델 1과 2에 속할 확률은 (posterior with equal prior) Bayes 공식에 의해서 

$$ w_1[i] = \frac{ e^{ - \frac{ r_1^2[i]}{2\sigma^2} } } {e^{ - \frac{ r_1^2[i]}{2\sigma^2} } + e^{ - \frac{ r_2^2[i]}{2\sigma^2} } }, \quad w_1[i] = \frac{ e^{ - \frac{ r_2^2[i]}{2\sigma^2} } } {e^{ - \frac{ r_1^2[i]}{2\sigma^2} } + e^{ - \frac{ r_2^2[i]}{2\sigma^2} } }, \quad i = 0,1,2,... $$

로 주어진다. 여기서 $r_1(i)$와 $r_2(i)$는 residual error이다:

$$r_1[i] = a_1 x[i] + b_1 - y[i],\quad r_2[i] = a_2 x[i] + b_2 - y[i], \quad i=0,1,2,...$$

(*이 값 대신에 직선까지 거리=$\frac{|a_k x + b_k - y|}{\sqrt{1+ a_k^2}},~ k=1,2)$로 대체해도 된다)

이제 각각의 데이터에 대해서 posterior를 구하였으므로(E-step) 이 값을 가중치로 하여서 직선의 방정식을 다시 갱신한다. 즉, 각각의 data 점들에 대한 $w_1(i)$를 가중치로 하여서 다시 직선 모델 1의 파라미터를 재계산하고, 동일한 과정을 $w_2(i)$를 가지고 직선 모델 2를 계산하여서 $(a_1, b_1)$, $(a_2, b_2)$를 재계산한다(M-step). 이 갱신된 파라미터를 이용하여서 다시 가중치를 구하는 작업과, 직선의 파라미터를 구하는 작업을 일정하게 수렴할 때까지 반복을 하는 과정을 수행한다.

아래의 그림은 3번 만에 원하는 결과를 얻는 것을 보여준다. 직선의 파라미터에 대한 초기값과 residual error의 표준편차 파라미터에 대한 적절한 값의 선택이 중요하다.

사용자 삽입 이미지

// 코드의 일부...
std::vector<CPoint> data ;                             // data,
std::vector<double> w1(data.size()), w2(data.size());  // weights.
double a1, b1, a2, b2 ;                                // line params;
double sigma ;
// E-step;
void calcWeights() {
    for (int i = data.size(); i-- > 0;) {
        double  x = data[i].x, y = data[i].y ;
        double r1 = a1 * x + b1 - y ;
        double r2 = a2 * x + b2 - y ;
        double n1 = SQR(r1) / SQR(sigma) / 2;
        double n2 = SQR(r2) / SQR(sigma) / 2;
        double p1 = exp( - n1);
        double p2 = exp( - n2);
        w1[i] = p1 / (p1 + p2);
        w2[i] = p2 / (p1 + p2);
    }
};
//  M-step
void estimModels() {
    double s1xx = 0, s1x = 0, s1 = 0, s1y = 0, s1xy = 0;
    double s2xx = 0, s2x = 0, s2 = 0, s2y = 0, s2xy = 0;
    for (int i = data.size(); i-- > 0;) {
        double  x = data[i].x,
                y = data[i].y;
            s1xx += w1[i] * SQR(x);
            s1xy += w1[i] * x * y;
            s1x  += w1[i] * x;
            s1y  += w1[i] * y;
            s1   += w1[i];
            //
            s2xx += w2[i] * SQR(x);
            s2xy += w2[i] * x * y;
            s2x  += w2[i] * x;
            s2y  += w2[i] * y;
            s2   += w2[i];
    };
    double det1 = s1xx * s1 - SQR(s1x);
    double det2 = s2xx * s2 - SQR(s2x);
    a1 = (s1 * s1xy  - s1x * s1y ) / det1;
    b1 = (s1xx * s1y - s1x * s1xy) / det1;
    a2 = (s2 * s2xy  - s2x * s2y ) / det2;
    b2 = (s2xx * s2y - s2x * s2xy) / det2;
}
 
728x90

'Image Recognition' 카테고리의 다른 글

Robust Line Fitting  (0) 2008.07.08
EM: Binarization  (0) 2008.07.01
Gaussian Mixture Model  (2) 2008.06.07
Rasterizing Voronoi Diagram  (0) 2008.05.26
RANSAC Algorithm  (0) 2008.05.24
Posted by helloktk
,

주어진 N개의 관측값을 k개의 가우시안 mixture로 모델링한 후 EM 알고리즘을 적용하여 모델을 결정하는 파라미터를 추정하고자 한다. 추정해야 할 모델 파라미터는 k개의 가우시안을 기술하는 평균값(μ)과 공분산 행렬(Covariance Matrix: Σ)과 이들 가우시안 분포의 mixing(α) 정도를 나타내는 파라미터이다.

사용자 삽입 이미지

다음은 이 과정을 수행하는 C++ class와 사용 예제, 및 결과를 보여준다.

//가우시안 kernel Class;
class GaussKernel2D {
    double mx, my;
    double sdx, sdy, sdxy;
    double weight;
public:
    std::vector<double> posterior;
    std::vector<double> wgauss;

    void init(POINT* pts, int np, int sx, int sy, int w) {
        posterior.resize(np);
        wgauss.resize(np);
        weight = w ;
        // initialize model parameters(random하게 선택함-->try another method!!::
        // 주어진 데이터로 전체 분포의 범위와 중심을 알 수 있고, 이를 주어진 클래스 수만큼 임의로 
        // 분배하는 방식으로 초기조건을 설정하면 보다 안정적으로 동작한다)
        mx = sx * double(rand()) / RAND_MAX;
        my = sy * double(rand()) / RAND_MAX;
        sdx = sx / 4 + 1;
        sdy = sy / 4 + 1;
        mx += rand() % 100 ;
        my += rand() % 100 ;
        sdxy = 0;
    }
    double gauss2d(double x, double y) { 
        double varx = sdx * sdx;
        double vary = sdy * sdy;
        double det = varx * vary - sdxy * sdxy;
        double idet = 1.0 / det ;
        double dxx = (x - mx) * (x - mx);
        double dyy = (y - my) * (y - my);
        double dxy = (x - mx) * (y - my);
        return (1.0 / sqrt(det) / 6.28319) * exp(-0.5 * (dxx * vary \
                               + dyy * varx - 2. * dxy * dxy) * idet); 
    }
    void getParams(POINT *pts, int np, double prior = 0) {
        double sx = 0, sy = 0, sxx = 0, syy = 0, sxy = 0;
        for (int j = 0; j < np; j++) {
            double x = pts[j].x, y = pts[j].y;
            sx  += posterior[j] * x;
            sy  += posterior[j] * y;
            sxx += posterior[j] * x * x;
            syy += posterior[j] * y * y;
            sxy += posterior[j] * x * y;
        }
        double denorm = np * weight;
        mx = sx/denorm; my= sy / denorm;
        double devx = sxx / denorm - mx * mx ;
        if (devx <= 0) devx = 0.001;
        sdx = sqrt(devx);
        double devy=syy / denorm - my * my;
        if (devy <= 0) devy = 0.001;
        sdy = sqrt(devy);
        sdxy = sxy / denorm - mx * my;
        // if prior = non-zero -> weight = weight*(1-alpha)+alpha*prior; alpha=0.1?
    };
    // weight; // posterior;
    void estimate(double *px, int np) {
        weight = 0;
        for(int j = 0; j < np; j++) {
            posterior[j] = wgauss[j] / px[j];    
            weight += posterior[j];
        }
        weight /= np; 
    } 
    //P(x|thetal) * prior;
    void setProb(POINT *pts, int np) {
        for(int i = 0; i < np; i++){
            wgauss[i] = weight * gauss2d(pts[i].x, pts[i].y);
        }
    }
    void Draw(CDC* pDC, DWORD color = RGB(0xFF, 0, 0)) {
        CPen pen0(PS_SOLID, 1, color);
        CPen* pOld = pDC->SelectObject(&pen0);
        drawCon(pDC, mx, my, sdx, sdy, sdxy);        // draw ellipses;
        pDC->Ellipse(mx - 2, my - 2, mx + 2, my + 2);// draw center of ellipse;
        pDC->SelectObject(pOld);            
    }
};
void em_main(POINT *pts, int np) {
    GaussKernel2D kernel[NKERNELS];
    int nclass = NKERNELS;
    double weights[20] = {1};
    std::vector<double> px(np);
    double wsum = 0 ;

    for (int i = 0; i < nclass; i++) {
        kernel[i].init(pts, np, 400, 400, weights[i]);
        wsum += weights[i];
    };    
#define MAX_ITER 50
    for (int iter = 0; iter < MAX_ITER; ++iter){   
        for (i = 0; i < np; i++) px[i] = 0;
        for (int k = 0; k < nclass; k++){
            GaussKernel2D & gker = kernel[k];
            gker.setProb(pts, np); 
            for (int i = 0; i < np; i++){
                px[i] += gker.wgauss[i] ;
            }
        }        
        for (k = 0; k < nclass; k++) {
            kernel[k].estimate(&px[0], np);
            kernel[k].getParams(pts, np);
        }
        //또는 log-likelihood를 계산하여서 그 변화가 적으면 loop-끝내면 된다..
    }
}

//참고 : 아래의 데이터는 사전에 라벨링이 된 것이 아니다. 컬러링은 한번 계산한 후에 분포에 맞게 컬러를 조절하여서 다시 계산한 것이다.

사용자 삽입 이미지

 

f(y|θ);

사용자 삽입 이미지

 

728x90

'Image Recognition' 카테고리의 다른 글

EM: Binarization  (0) 2008.07.01
EM Algorithm: Line Fitting  (0) 2008.06.29
Rasterizing Voronoi Diagram  (0) 2008.05.26
RANSAC Algorithm  (0) 2008.05.24
Contour Tracing  (0) 2008.05.22
Posted by helloktk
,