이미지 처리 과정에서 미분에 해당하는 그래디언트 필드(gradient field: $g_x$, $g_y$ )를 이용하면 이미지 상의 특징인 corner, edge, ridge 등의 정보를 쉽게 얻을 수 있다. 이미지의 한 지점이 이러한 특징을 가지는 특징점이 되기 위해서는 그래디언트 필드의 값이 그 점 주변에서 (3x3나 5x5정도 크기의 window) 일정한 패턴을 유지해야 한다. 이 패턴을 찾기 위해서 그래디언트 필드에 PCA를 적용해보자. 수평과 수직방향의 그래디언트 field인 $g_x$와 $g_y$ 사이의 covariance 행렬은 다음 식으로 정의된다:

$$ \Sigma = \left [ \begin {array}{cc} < g_x^2 > & < g_x g_y > \\    <g_x g_y> & <g_y^2 > \end {array}\right] =\left [ \begin {array}{cc} s_{xx} & s_{xy} \\ s_{xy} & s_{yy}\end {array}\right];$$

$<...> = \int_{W}(...) dxdy$는 픽셀 윈도에 대한 적분을 의미한다. $\Sigma$의 eigenvalue는 항상 음이 아닌 값을 갖게 되는데 (matrix 자체가 positive semi-definitive), 두 eigenvalue이 $λ_1$, $λ_2$면

$$λ_1 + λ_2 = s_{xx} + s_{yy} \ge 0, \quad \quad    λ_1  λ_2 = s_{xx} s_{yy} - s_{xy}^2 \ge0 $$

을 만족한다 (완전히 상수 이미지를 배제하면 0인 경우는 없다). eigenvalue $λ_1$, $λ_2$는 principal axis 방향으로 그래디언트 필드의 변동(분산)의 크기를 의미한다. edge나 ridge의 경우는 그 점 주변에서 잘 정의된 방향성을 가져야 하고, corner의 경우는 방향성이 없어야 한다. edge나 ridge처럼 일방향성의 그래디언트 특성을 갖거나 corner처럼 방향성이 없는 특성을 서로 구별할 수 있는 measure가 필요한데, $λ_1$과 $λ_2$를 이용하면 차원이 없는 measure을 만들 수 있다. 가장 간단한 차원이 없는 측도(dimensionless measure)는  eigenvalue의 기하평균과 산술평균의 비를 비교하는 것이다.

$$ Q = \frac { {λ_{1} λ_{2}} }{ \left( \frac {λ_{1}+λ_{2}}{2} \right)^2} = 4\frac { s_{xx} s_{yy} - s_{xy}^2}{(s_{xx} + s_{yy})^2};$$

기하평균은 산술평균보다도 항상 작으므로

$$ 0 \le Q \le 1 $$

의 범위를 갖는다. 그리고 $Q$의 complement로

$$P = 1-Q = \frac{(s_{xx}-s_{yy})^2 + 4 s_{xy}^2}{(s_{xx}+s_{yy})^2};$$를 정의할 수 있는 데 $0 \le P \le 1$이다. $Q$와 $P$의 의미는 무엇인가? 자세히 증명을 할 수 있지만 간단히 살펴보면 한 지점에서 $Q \rightarrow 1$이려면 $λ_{1} \approx λ_{2}$이어야 하고, 이는 두 주축이 동등하다는 의미이므로 그 점에서는 방향성이 없는 코너의 특성을 갖게 된다. 반대로 $Q \rightarrow 0$이면 강한 방향성을 갖게 되어서 edge(ridge) 특성을 갖게 된다.

 

실제적인 응용으로는 지문 인식에서 지문 영역을 알아내거나 (이 경우는 상당이 큰 윈도를 사용해야 한다) 또는 이미지 텍스쳐 특성을 파악하기 위해서는 이미지를 작은 블록으로 나누고 그 블록 내의 미분 연산자의 균일성을 파악할 필요가 있는데 이 차원이 없는 측도는 이미지의 상태에 상관없이 좋은 기준을 주게 된다.

 

참고 논문:

Image field categorization and edge/corner detection from gradient covariance
Ando, S.

Pattern Analysis and Machine Intelligence, IEEE Transactions on
Volume 22, Issue 2, Feb 2000 Page(s):179 - 190

 

** 네이버 블로그 이전;

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Is Power of 2  (0) 2021.02.12
Flood-Fill and Connected Component Labeling  (2) 2021.02.10
점증적인 cosine/sine 값 계산  (0) 2020.12.28
Fast Float Sqrt  (0) 2020.12.27
2차원 Gaussian 분포 생성  (0) 2020.12.10
Posted by helloktk
,

영상처리에서 한 픽셀의 수정을 위해서 주변 픽셀의 정보를 요구하는 윈도 기반 필터들은 일반적 연산 비용이 큰 편이다. 한 변의 길이가 W인 윈도를 사용할 때  W^2 횟수의 픽셀을 참조해야 하므로 윈도가 클수록 그 비용은 제곱으로 증가한다. 선형 필터 중에는 x-방향과 y-방향 연산으로 각각 분리가 가능한 경우는 연산 비용이 필터의 크기에만 비례하도록 만들 수 있다. median 필터는 이런 분리가 안 되는 비선형 필터 중 하나다. 근사적으로 x-방향으로 median filtering을 하고, 그 결과를 y-방향으로 다시 median filtering을 하는 방법으로 연산을 줄이는 방법을 사용하기도 한다.   

윈도가 움직이면서 윈도 내 모든 픽셀이 다 바뀌는 것이 아니라 움직이는 방향에 수직인 가장자리 픽셀만 바뀐다는 사실을 이용하면 각 픽셀의 윈도에서 median을 찾는 작업을 할 필요가 없다. 예를 들면 scanline 방향(x-방향)으로 윈도를 움직이면서 median filter를 작용할 때, 윈도가 오른쪽으로 1 픽셀 움직이면 윈도의 왼쪽 가장자리의 수직 픽셀들은 새 윈도에서 사라지고, 기존 윈도의 오른쪽 수직 가장자리 앞의 픽셀들이 새로 들어온다. 따라서 각 스캔라인에서 처음 한 번만 윈도의 median을 찾으면 이후에는 윈도가 이동할 때 윈도를 나가는 픽셀과 새로 들어오는 픽셀 (2*W) 개에 대해서 이전 median과 비교만 하면 된다. 이 방법은 비교 횟수가 윈도 크기에 1차적으로 비례하므로 연산 부담을 많이 줄일 수 있다. 이 방법은 사각형 모양의 윈도를 가지는 다른 필터(mean filter, max-filter, min-filter,...)에 대해서도 쉽게 적용할 수 있다.

// boundary region도 처리할 수 있게 수정함; 2021-04-18;
// window size = wx * wy;
// median = argmin(hist[i] >= halfArea)
int RunningMedianFilter(BYTE* image, int w, int h, int wx, int wy, BYTE* out) {
    int hist[256], x;
    int wxhalf = wx >> 1;
    int wyhalf = wy >> 1;
    wx = (wxhalf << 1) + 1;  // size of window = odd number;
    wy = (wyhalf << 1) + 1;
    for (int y = 0, yw = 0; y < h; ++y, yw += w) {
        // calc available area;
        int wystart = max(0, y - wyhalf);
        int wystop  = min(h, y + wyhalf);
        int wysize  = wystop - wystart + 1;
        int wxstart  = 0;
        int wxstop   = wxhalf;
        int halfArea = (wxstop * wysize + 1) >> 1;
        // to avoid *w multiplication in y-step;
        wystart *= w; 
        wystop  *= w;
        // initial histogram of topleft window;
        memset(hist, 0, 256 * sizeof(int));
        for (int iy = wystart; iy <= wystop; iy += w) 
            for (int ix = wxstart; ix <= wxstop; ++ix) hist[image[iy + ix]]++;
        // find initial median;            
        int ltmed = hist[0];       // less_than_median;
        int med = 0;
        while (ltmed < halfArea) ltmed += hist[++med];  
        out[yw + 0] = med;
        // left edge rgn;
        for (x = 1; wxstop < wx; ++x) {
            ++wxstop;
            halfArea = (wxstop * wysize + 1) >> 1;
            for (int iy = wystart; iy <= wystop; iy += w) {
                int v = image[iy + wxstop];     // (x=wxstop) strip enters;
                ++hist[v];
                if (v <= med) ++ltmed;
            }
            while (ltmed >= halfArea) ltmed -= hist[med--];  
            while (ltmed < halfArea)  ltmed += hist[++med];  
            out[yw + x] = med;
        }
        // central rgn;
        for ( ; wxstop < w; ++x) {
            ++wxstop;
            for (int iy = wystart; iy <= wystop; iy += w) {
                int v = image[iy + wxstart];    // (x=wxstart) strip leaves;
                --hist[v];
                if (v <= med) --ltmed;
                v = image[iy + wxstop];         // (x=wxstop) strip enters;
                ++hist[v];
                if (v <= med) ++ltmed;
            }
            ++wxstart;
            while (ltmed >= halfArea) ltmed -= hist[med--];
            while (ltmed < halfArea)  ltmed += hist[++med];
            out[yw + x] = med;
        }
        // right edge rgn;
        for ( ; x <= w; ++x) {
            for (int iy = wystart; iy <= wystop; iy += w) {
                int v = image[iy + wxstart];  // (x=wxstart) strip leaves;
                --hist[v];
                if (v <= med) --ltmed;
            }
            ++wxstart;
            halfArea = ((wxstop - wxstart + 1) * wysize + 1) >> 1;
            while (ltmed >= halfArea) ltmed -= hist[med--];
            while (ltmed < halfArea)  ltmed += hist[++med];
            out[yw + x] = med;
        }
    }
    return 1;
};

wx=wy=7;

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Bicubic Interpolation  (1) 2010.01.14
Bezier Curve을 이용한 Histogram Smoothing  (0) 2010.01.10
Fant's Resampling  (0) 2008.12.17
Bright Preserving Histogram Equalization with Maximum Entropy  (0) 2008.07.31
Adaptive Binarization  (2) 2008.07.14
Posted by helloktk
,