기준 좌표계에 대해서 원점을 이동하고 좌표축을 회전시킨 새로운 좌표계에서 점의 좌표는 바뀐다. 원래의 좌표와 바뀐 좌표값 사이의 관계를 주는 변환이 Isometric transformation (isometry)이다. 평면에서 이 변환은 평행이동을 나타내는 파라미터 2개, 그리고 1개의 회전각 파라미터에 의해서 결정이 된다. 회전각이 $θ$고, 평행이동이 $(t_x, t_y)$인 isometry에 의해서 두 점 $(x, y)$가 $(u, v)$로 연결이 되는 경우에, 아래의 식으로 표현이 된다:

$$u=\cos( \theta ) x -\sin (\theta) y + t_x;\\ v = \sin (\theta) x +  \cos (\theta) y + t_y;$$

따라서 isometry로 연결이 되는 두 점의 조합 $\{(x_1, y_1) \rightarrow(u_1, v_1), (x_2, y_2)\rightarrow(u_2, v_2)\}$ 만 있으면 이들 파라미터를 정확히 결정할 수 있다. 그러나 변환에 필요한 점 정보를 얻는 과정은 필연적으로 노이즈의 영향을 받게 되므로 주어진 모든 점을 정확히 연결하는 변환을 일반적으로 구할 수 없다. 이 경우에는 isometry 파라미터는 일반적으로 최소자승법에 의해서 결정될 수 있다. 

최소자승법을 사용하기 위해서는 회전각 $θ$보다는 $a = \cos θ$, $b = \sin θ$로 정의된 새로운 파라미터로 식을 표현하는 것이 더 편리하다. 그러나 이 경우에 파라미터 $a, b$는 서로 독립적이 아니고 $a^2 + b^2 = 1$의 제한 조건을 만족시켜야 한다.  

평행이동 파라미터는 질량중심의 isometry 관계로 해결이 되므로, 이 전체 계산을 각각의 질량중심을 원점으로 하는 좌표로 옮겨서 적용하면 더 이상 평행이동을 고려할 필요 없이 회전만 계산하면 된다.

최소자승법의 원리에 따라 입력점의 isometry 결과와 대응점 사이의 거리의 제곱 합 $L$을 주어진 제약조건 내에서 최소화시키는 파라미터 $a, b, λ$를 찾으면 된다:

$$L = \sum_i \big [ (a  x_i - b  y_i - u_i)^2 + (b  x_i + a  y_i - v_i)^2 \big] + λ  (a^2 + b^2 - 1) ;$$

여기서 $λ$는 제한 조건 $a^2 + b^2 = 1$를 넣기 위한 Lagrange multiplier이다. 극값을 찾기 위해서 $L$를 각각 $a, b, λ$에 대해서 미분해서 다음 조건을 얻는다:

$$\sum_i  ( a  x_i - b  y_i - u_i) x_i + ( b  x_i + a  y_i - v_i) y_i + λ a = 0 ;\\ \sum_i  ( a  x_i - b  y_i - u_i) (-y_i) + ( b  x_i + a  y_i - v_i) x_i + λ b = 0;\\ a^2 + b^2 = 1; $$

이 식들을  $a, b, λ$에 대해서 풀면 다음의 관계식을 얻는다:

$$a = ∑(x_i u_ i + y_ i v_ i) / ∑ (x_ i^2 + y_i^2 + λ) ; \\ b = ∑ (x_i v_ i - y_i u_i) / ∑ (x_i^2 + y_i^2 + λ); $$
또한, Lagrange 멀티플라이어 $λ$는

$$A  = ∑ (x_i u_i + y_i v_i); \\  ~B =  ∑ (x_i v_i - y_i u_i);$$

로 놓으면, $a^2 + b^2 = 1$ 에서

$$∑ ( x_i^2 + y_i^2 + λ ) = \sqrt {A^2 + B^2}; $$

임을 쓰면 된다. 따라서 회전각은

$$\cos \theta = a = \frac{A}{ \sqrt {A^2 + B^2}};\\ ~\sin \theta = b = \frac{B }{ \sqrt {A^2 + B^2}};$$

로 주어진다.

질량중심을 빼기 전 좌표 $(x, y)$의 질량중심과 $(u, v)$의 질량중심은 서로 isometry에 의해서 연결이 되므로, 이 관계에서 평행이동 파라미터 $(t_x, t_y)$는 결정이 된다:
$$(x_c, y_c) \rightarrow (u_c, v_c);\\ u_c = a  x_c  - b  y_c + t_x ;\\v_c = b  x_c + a  y_c + t_y ;$$

참고:
** affine transformation = similarity transformation + shear;
** similarity transformation = isometry transformation + overall scaling;

/* struct CfPt { double x, y;};
*      u = T[0] * x + T[1] * y +T[4] ;
*      v = T[2] * x + T[3] * y + T[5] ; 
*/
BOOL IsometryTransform(CfPt A[], CfPt U[], int n, double T[6]) {
    double cx = 0, cy = 0;
    double ux = 0, uy = 0;
    for (int i = 0; i < n ; i++) {
        cx += A[i].x ;  cy += A[i].y ;
        ux += U[i].x ;  uy += U[i].y ;
    };
    //center of mass ;
    cx /= n; cy /= n;
    ux /= n; uy /= n;

    //centering 된 좌표계에서 계산;
    double dot = 0 , cross = 0;
    for (int i = 0; i < n; i++) {
        double x = A[i].x - cx, y = A[i].y - cy;
        double u = U[i].x - ux, v = U[i].y - uy;
        dot += (x * u + y * v);
        cross += ( x * v - y * u) ;
    };
    double norm = sqrt(dot * dot + cross * cross) ;
    double a = dot / norm ;
    double b = cross / norm ;

    T[0] = a ; T[1] = -b ; T[2] = b; T[3] = a; 
    T[4] = ux - (a * cx - b * cy) ;
    T[5] = uy - (b * cx + b * cy) ;
    return 1;
} ;
728x90

'Image Recognition' 카테고리의 다른 글

Affine Transformation  (0) 2010.01.20
Color Counting  (0) 2010.01.18
Active Shape Model (3)  (0) 2009.12.30
Eigenface (2)  (0) 2009.12.28
Active Shape Model (ASM)  (2) 2009.12.25
Posted by helloktk
,

2차원 이미지의 기하학적인 변형 중에서 평행이동, 회전 및 전체적인 크기의 변화를 주는 변환이 similarity transformation이다. 이 변환은 두 직선이 이루는 각을 보존하고 길이 비를 유지한다. 따라서 similarity 변환 후 물체의 모양은 변환 전과 같은 형태를 가진다. 이 변환보다도 더 일반적인 2차원의 기하학적인 변환은 affine transformation이다. Affine 변환은 한쪽 방향으로의 밀림(sheer)도 허용한다. 평행한 두 직선은 affine 변환 후에도 여전히 평행하다.

Hierarchy of 2d transformation

 

Similarity transformation은 전체적인 크기를 바꾸는 scale parameter($s$) 1개와 회전각($θ$) 1개, 그리고 $x, y$축으로의 평행이동을 나타내는 parameter ($t_x$, $t_y$) 2 개를 합해서 총 4개가 있어야 한다. 이 parameter에 의해서 원본 이미지의 픽셀 $(x, y)$가 변환된 이미지의 픽셀 $(u, v)$에 대응한다고 하면, 이들 간의 관계는 다음식으로 주어진다. $$u =  s\cos (θ) x - s \sin (θ) y + t_x;$$ $$v =  s \sin (θ) y + s \cos (θ) y + t_y;$$ 따라서 원본 영상의 2점에 대응하는 정보만 주어지면 파라미터 $(s, θ, t_x, t_y)$를 유일하게 결정할 수 있다.     $$(x_1, y_1) \rightarrow  (u_1, v_1),\\ (x_2 , y_2)  \rightarrow (u_2, v_2) $$그러나 많은 경우에는 기준점을 잡는데 에러 등을 고려하여서 일반적으로 원본 영상의 $N(\ge 2)$ 개의 점에 대응하는 정보를 주게 되는데, 이 경우에 변환 관계식은 overdetermined 되어서 해를 구할 수 없는 경우도 있다. 이 경우에는 최소자승법을 써서 변환점과 변환식에 의해서 의해서 주어지는 값의 차이를 최소화시키는 파라미터를 구해서 쓰면 된다.$$L =  \sum_{i} | u_i - (s\cos(θ) x_i - s \sin(θ) y_i + t_x)|^2 + |v_i - (s \sin(θ) x_i + s \cos(θ) y_i + t_y)|^2, \\ (s, \theta, t_x, t_y) =\text {argmin}(L);$$이 식을 최소화시키는 파라미터는 $(a= s \cos(θ), b=s \sin(θ)$로 놓으면) $a, b, t_x, t_y$에 대해서 극값을 가질 조건에서 얻을 수 있다. $$\frac {\partial L}{\partial a}=0: \quad \sum_{i} (u_i - (ax_i - by_i + t_x))(-x_i) + (v_i - (bx_i + ay_i + t_y))(-y_i) = 0,\\ \frac {\partial L}{\partial b}=0:\quad \sum _{i} (u_i - (ax_i - by_i + t_x))(y_i) + (v_i - (bx_i + a y_i + t_y))(-x_i) = 0, \\ \frac {\partial L}{\partial t_x}=0: \quad \sum_{i} (u_i - (ax_i - by_i + t_x)) = 0, \\ \frac {\partial L}{\partial t_y}=0: \quad  \sum_{i} (vi - (bx_i + ay_i + t_y)) = 0.$$ 따라서, $S_u = \sum_i  u_i$, $S_v = \sum_i v_i$, $S_{ux} = \sum _i  u_i x_ i$, $S_{uy} = \sum _i  u_iy_i$, $S_{vx} = \sum_i  v_i x_i$, $S_{vy} = \sum _i v_i y_i$, $S_x = \sum  x_i$, $S_y=\sum _i y_i$, $S_{xx} = \sum_i  x_i^2$, $S_{xy} = \sum_i x_iy_i$, $S_{yy}=\sum_i y_i^2$라고 하면,$$-S_{ux}  + a   S_{xx} + t_x  S_x - S_{vy} + a S_{yy} + t_y S_y = 0; \\ S_{uy} + b  S_{yy} - t_x  S_y -S_{vx} + b S_{xx}  + t_y S_x = 0;\\ S_u - a S_x + bS_y - t_x  N = 0; \\ S_v - b S_x - aS_y - t_y  N = 0;$$의 4개의 식을 얻으므로 $(a, b, t_x, t_y)$에 대한 1차 연립방정식을 풀면 된다.

$$\left [\begin {array}{cccc} S_x&-S_y&N&0\\S_y &S_x&0&N\\ S_{xx}+S_{yy}&0&S_x&S_y\\0 &S_{xx}+S_{yy}&-S_y&S_x\end {array} \right]\left [\begin {array}{c} a\\b\\t_x\\t_y \end {array}\right]=\left [\begin {array}{c} S_u\\S_v\\S_{ux} +S_{vy}\\S_{vx}-S_{uy}\end {array}\right]$$이 식의 답은 쉽게 구할 수 있고, 아래의 코드는 이것을 구현한 것이다. 물론, $N=2$개인 경우에는 파라미터는 유일하게 정해지고 이보다도 더 간단한 식으로 주어진다.

// dstPt = (S|T)(srcPt)
BOOL SimilarTransParams(std::vector<CPoint>& srcPts, std::vector<CPoint>& dstPts, double ST[4]) 
{
    double Sx, Sy, Sxx, Syy;
    double Su, Sv, Sxu, Sxv, Syu, Syv ;
    Sx = Sy = Sxx = Syy = 0;
    Su = Sv = Sxu = Sxv = Syu = Syv = 0;
    for (int i = srcPts.size(); i-->0;) {
        double x = srcPts[i].x, y = srcPts[i].y;
        double u = dstPts[i].x, v = dstPts[i].y;
        Sx  += x;        Sy  += y;
        Sxx += (x * x);  Syy += (y * y);
        Su  += u;        Sv  += v;
        Sxu += (x * u);  Syv += (y * v);
    }
    double Z = Sxx + Syy, C1 = Sxu + Syv, C2 = Sxv - Syu;
    double A[16], invA[16] ;
    A[0]  = Sx; A[1]  = -Sy;  A[2]  = srcPts.size(); A[3]  = 0;
    A[4]  = Sy; A[5]  = Sx;   A[6]  = 0;             A[7]  = A[2];
    A[8]  = Z;  A[9]  = 0;    A[10] = Sx;            A[11] = Sy;
    A[12] = 0;  A[13] = Z;    A[14] = -Sy;           A[15] = Sx;
    InvertMatrix4x4_d(A, invA) ;
    double R[4] ;
    R[0] = Su ; R[1] = Sv; R[2] = C1; R[3] = C2 ;
    // ax = scale * cos(angle) ;
    double ax = invA[0]*R[0]  + invA[1]*R[1]  + invA[2]*R[2]  + invA[3]*R[3];
    // ay = scale * sin(angle) ;
    double ay = invA[4]*R[0]  + invA[5]*R[1]  + invA[6]*R[2]  + invA[7]*R[3];
    // x-translation ;
    double tx = invA[8]*R[0]  + invA[9]*R[1]  + invA[10]*R[2] + invA[11]*R[3];
    // y-translation ;
    double ty = invA[12]*R[0] + invA[13]*R[1] + invA[14]*R[2] + invA[15]*R[3];
    ST[0] = ax; ST[1] = ay; ST[2] = tx; ST[3] = ty;
    return TRUE ;
};

InvertMatrix4x4()는 4x4행렬의 역행렬을 구한다(OpenCV에서)

2개의 대응점만 주어진 경우 $(x_1, y_1), (x_2, y_2) \rightarrow (u_1, v_1), (u_2, v_2)$;

bool SimilarTransParams(double x1, double y1, double x2, double y2, 
                        double u1, double v1, double u2, double v2,
                        double ST[4]) {
    double x21 = x2 - x1, y21 = y2 - y1;
    double u21 = u2 - u1, v21 = v2 - v1;
    double det = x21 * x21 + y21 * y21;
    if (det == 0.) return false;
    double a = (x21 * u21 + y21 * v21) / det ;
    double b = (x21 * v21 - y21 * u21) / det ;
    double tx = u1 - a * x1 + b * y1;
    double ty = v1 - b * x1 - a * y1;
    ST[0] = a; ST[1] = b; ST[2] = tx; ST[3] = ty;
    return true;
};


얼굴인식용 training data set을 만들기 위해서 얼굴을 정렬시키는 데 사용한 예:
- 양 눈의 위치 변환: (70,93), (114, 84) --> (30,45), (100,45)로 변환( linear interpolation사용)
- 실제로 사용되는 변환은 정해진 dst영역으로 매핑하는 src영역을 찾아야 하므로, 역변환이 필요하다.
- 필요한 역변환은 src와 dst의 역할만 바꾸면 쉽게 구할 수 있다.

원본 얼굴 이미지
변환된 영상

 
 
728x90

'Image Recognition' 카테고리의 다른 글

Eigenface (2)  (0) 2009.12.28
Active Shape Model (ASM)  (2) 2009.12.25
Eigenface  (0) 2009.12.12
Retinex 알고리즘 관련 자료  (1) 2009.04.29
Spline Based Snake  (0) 2008.08.15
Posted by helloktk
,