평면 위에서 주어진 점집합을 포함하는 가장 작은 원을 찾는 문제는 가장 단순하게는 임의의 두 점이 지름이 되는 원과 임의의 세 점이 만드는 외접원을 모두 조사하여 찾으면 된다. 따라서 $O(n^4)$의 복잡도를 가질 것이다. 그러나 이 문제는 점집합의 갯수에 비례하는 시간 복잡도($O(n)$)를 가지는 알고리즘이 알려져 있고, 여기서는 재귀적 방법을 이용한  Welzl's algorithm을 구현한다.

int MinEncCir ( CfPt *P, int n, CfPt* boundary, int b, CfPt& center, double& rad ) {
    // exiting cases
    if ( b == 3 ) CalcCircle3 ( boundary, center, rad ); // a circle passing 3 points;
    else if ( ( n == 1 ) && ( b == 0 ) ) {
        rad = 0; b = 1;
        center = boundary[0] = P[0];
    } 
    else if ( ( n == 2 ) && ( b == 0 ) ) {
        boundary[0] = P[0]; boundary[1] = P[1]; b = 2;
        CalcCircle2 (boundary, center, rad );  // a circle with diagonal consisting of 2 points;
    }
    else if ( ( n == 0 ) && ( b == 2 ) ) {
        CalcCircle2 ( boundary, center, rad );
    }
    else if ( ( n == 1 ) && ( b == 1 ) ) {
        boundary[1] = P[0]; b = 2;
        CalcCircle2 ( boundary, center, rad );
    }
    else {// general case; ( b < 3 ) && ( n + b > 2 )
        // choose a random pivot;
        int k = rand() % n;
        if ( k != 0 ) SWAP( P[0], P[k] );
        int b1 = MinEncCir ( &P[1], n - 1, boundary, b, center, rad );
        if (!InCircle(P[0], center, rad) ) {
            // Now, P[0] belongs to the boundary.
            boundary[b++] = P[0];
            return MinEncCir ( &P[1], n - 1, boundary, b, center, rad );
        } else return b1;
    }
    return b;
}
728x90

'Computational Geometry' 카테고리의 다른 글

Approximate Minimum Enclosing Circle  (1) 2021.03.18
Minimum Bounding Rectangle  (3) 2021.03.15
Creating Simple Polygons  (0) 2021.01.25
단순 다각형의 Convex Hull  (0) 2021.01.24
단순 다각형의 무게중심  (0) 2021.01.24
,