Brute-force : $O(n^2)$,
Optimal: $O(n\log n)$
참고: people.csail.mit.edu/indyk/6.838-old/handouts/lec17.pdf
참고: arxiv.org/pdf/1911.01973.pdf
// points should be sorted in order of increasing x-component.
//
#define DIST2(p, q) ((p).x-(q).x)*((p).x-(q).x) + ((p).y-(q).y)*((p).y-(q).y)
// 수정: index range -> [left, right]; ClosestPair(points, 0, points.size()-1, closest);
int ClosestPair(std::vector<CPoint>& points, int left, int right, int closest[2]) {
if (right - left >= 3) {
int lpair[2], rpair[2], min_dist2;
int mid = left + (right - left) / 2; // half index;
int ldist = ClosestPair(points, left, mid, lpair); // left side;
int rdist = ClosestPair(points, mid+1, right, rpair); // right side;
if (ldist < rdist) {
closest[0] = lpair[0]; closest[1] = lpair[1];
min_dist2 = ldist;
} else {
closest[0] = rpair[0]; closest[1] = rpair[1];
min_dist2 = rdist;
}
// find points which lies near center strip(2d-strip);
// Note our distance is the squar of actual distance;
int width = int(sqrt(double(min_dist2))+ .5);
int ll = left;
while (points[ll].x < (points[mid].x - width - 1)) ll++;
int rr = idx2;
while (points[rr].x > (points[mid + 1].x + width + 1)) rr--;
for (int i = ll; i < rr; i++) {
for (int j = i + 1; j <= rr; j++) {
int dist2 = DIST2(points[i], points[j]);
if (min_dist2 > dist2) {
min_dist2 = dist2;
closest[0] = i; closest[1] = j;
}
}
}
return min_dist2;
}
else if (right == left + 2) {
return ClosestPair3(points, left, closest);
}
else if (right == left + 1) {
closest[0] = left; closest[1] = right;
return DIST2(points[left], points[right]);
}
else return INT_MAX;
};
728x90
'Computational Geometry' 카테고리의 다른 글
Distance from a Point to an Ellipse (0) | 2024.03.06 |
---|---|
Data Fitting with B-Spline Curves (0) | 2021.04.30 |
DDA Algorithm (0) | 2021.04.25 |
B-Spline (0) | 2021.04.25 |
Bezier Smoothing (0) | 2021.04.23 |