제대로 segmented 된 그레이 영상은 원래의 영상이 나타내고자 하는 전경이 잘 표현이 된 것이다. 이 경우의 원래 영상과 segmented 된 영상은 높은 상관관계를 갖는다. 따라서, 세그먼트를 위한 임계값의 설정 기준으로 이 상관계수를 최대로 하는 임계값을 찾는 것도 좋은 방법 중의 하나가 될 수 있다.

여기서 사용할 상관계수는 원래의 영상(A)과 전경과 배경을 그들의 픽셀 평균값으로 대체한 segmented 된 영상(B) 간의 상관계수를 사용한다. 임계값이 $T$인 경우 세그먼트된 영상 B 

$$B(i,j) = \left\{\begin{array}{ll} m_0, & \text{if}~A(i,j) \le T\\ m_1, &\text{otherwise}\end{array}\right. $$

로 나타난다. 여기서 $m_0$는 배경 픽셀의 평균값이고, $m_1$은 전경 픽셀의 평균값이다. 이 값은 임계값 $T$에 따라 달라진다. 임계값이 높으면 $m_0$는 커지고, 반대로 $m_1$은 작아진다

 

임계값이 $T$일 때 배경 픽셀 비를 $p$, 전경 픽셀 비를 $q(=1- p)$라 하면 segmented된 영상 B는 각 영역에서의 픽셀 값을 평균으로 대체했으므로 원본 영상의 평균과 같다. 또한, 원본 영상의 분산은 임계값에 무관하게 일정한 값을 유지한다. 이를 정리하면,

$$E(A)=E(B)=m=\text{pixel mean}=p m_0 + q m_1$$

$$V(A)=\text{variance} =T\text{-independent} = \text{const}$$

$$V(B)=pm_0^2 + q m_1^2 - m^2 = pq (m_0 - m_1)^2$$

$$E(A,B)= p m_0^2 + q m_1^2 $$

$$E(A,B) - E(A) E(B) = V(B)$$ 이므로, 

\begin{align}\text{Correlation}(A,B) &=\frac{ {E(A,B)-E(A)E(B)} }{\sqrt{V(A)V(B)} } \\ &=\frac{\sqrt{pq(m_0 - m_1)^2 } }{\sqrt{V(A)} }\\ &\propto \sqrt{pq(m_0 -m_1)^2 }\\ &=\sqrt{\text{interclass variance}}\end{align}

, 원래의 그레이 영상 A와 전경과 배경 픽셀을 각각의 평균값으로 대체한 영상간의 상관계수는 전경과 배경 두 클래스 간의 분산이 최대일 때 가장 크게 나타난다. 이 기준은 Otsu 알고리즘에서 사용한 기준과 같다.

 

참고: Otsu Algorithm 구현 예.

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Is Pow of 2  (0) 2012.02.13
Fixed-point RGB2Gray  (0) 2012.01.25
Object Orientation  (1) 2010.01.17
Bicubic Interpolation  (1) 2010.01.14
Bezier Curve을 이용한 Histogram Smoothing  (0) 2010.01.10
Posted by helloktk
,