그림처럼 내부에서 질량 $m$인 공이 고정되어 있는 차가 처음 지상에 대해 $V$의 속도로 운동을 시작한다. 공이 운동을 시작하여 가장 아래에 내려왔을 때 차와의 상대속도가 $u$였다. 이 순간 지상에 대한 차의 속도는?

 

 

더보기

수평방향의 외력이 없으므로 운동량이 보존된다. 처음 차가 움직이는 속도로 움직이는 좌표게에서 보면 총 운동량은 0이다. 공이 가장 아래에 내려왔을 때 차와 공의 속도(차와 같이 움직이는 계)를 각각 $v_1$, $v_2$라면 $u = v_2 - v_1$이고, $Mv_1  + mv_2 =0$이다. 따라서 $v_1 = - mu / (m+M)$, $v_2 = Mu / (m+M)$이다. 다시 지상계로 돌아가면 차의 속도는 $V + v_1 = V - mu /(m+M)$임을 알 수 있다. 

[Q] 공과 내부의 곡면 사이에 마찰이 없어야 할까?

 
 
 
 
728x90
,

끝이 연결된 동일한 두 막대가 그림처럼 매끄러운 줄에 걸려 있다. 이제 오른쪽 막대 끝을 당겨 일정한 가속도 $a$로 움직이게 만들었다. 두 막대의 상대적인 움직임이 더 이상 없을 때 사이각 $\theta$는?

 

  1. $\tan \theta = a/g$
  2. $\tan \theta = 2a/g$
  3. $\tan (\theta/2) = a/g$
  4. $\tan (\theta/2) = 2a/g$
 
728x90
,

용수철에 매달린 물체를 평형위치에서 $A$만큼 압축을 시킨 다음 손을 뗀다. 평형위치에서 오른쪽으로 $A/2$인 지점에는 고정벽이 있고 물체는 벽과 탄성충돌을 한다. 물체가 벽과 충돌을 하는 시간 간격은 벽이 없을 때 물체의 진동 주기 $T$의 몇 배일까?

 

  1. $1/3$
  2. $3/8$
  3. $2/3$
  4. $3/4$
  5. $1$
 
 
더보기

벽과의 탄성충돌이 있을 때 물체의 운동은 벽이 없을 때의 주기운동에서 $T/3 \le t \le 2T/3$ 구간(아래 그림의 붉은색 구간)이 없는 경우와 같다. 

 
728x90
,