공기 저항이 속력에 비례하는 경우는 물체의 궤적은 closed form이 있다. 그러나 저항력이 속력의 제곱에 비례하게 주어지는 경우는 수치적으로 해결해야 한다. 움직이는 방향의 단면적이 $A=\frac{1}{4}\pi D^2$인 물체가 밀도가 $\rho$인 공기 속에서 $\vec{v}$의 속도로 움직일 때 저항력은
$$ {\vec F}_D = \frac{1}{4} \rho A v \vec{v}=\frac{1}{16}\pi \rho D^2 v\vec{v}=c v \vec{v}$$
로 표현할 수 있다. 따라서 물체의 운동방정식은
$$ m \ddot{\vec r} = m\vec{g}- c v \vec{v},$$
또는 성분으로 쓰면
$$ m \ddot{x} = - c \sqrt{ \dot{x}^2 + \dot{y}^2} \dot{x}, $$
$$m \ddot{y} = -mg - c \sqrt{\dot{x}^2+ \dot{y}^2} \dot{y}$$
로 주어진다. 아래의 mathematica 코드는 구체적인 수치(SI-단위 기준, 발사각 $\theta_0$, 발사속력 $v_0$)를 대입해서 공기저항이 있을 때와 없을 때 물체의 궤적을 보여준다.
을 만족시키는 발사각 $\theta$가 있어야 한다. $1/\cos^2 \theta = 1+ \tan^2 \theta$이므로 위 식은 $\tan \theta$에 대한 이차식이므로 일반적으로 발사각이 2개가 있다. 만약 $(x_0, y_0)$가 포탄에 맞는 경계영역에 있다면 근이 하나가 있을 것이고, 포탄이 도달할 수 없는 영역에 있다면 근이 존재할 수 없다. 따라서 포탄이 도달할 수 있는 영역의 경계는 이 $\tan \theta$에 대한 이차방정식이 중근을 가질 때 $(x_0, y_0)$의 자취로 주어진다.