주어진 데이터를 잘 피팅하는 직선을 찾기 위해서는 데이터를 이루는 각 점의 $y$ 값과 같은 위치에서 구하려는 직선과의 차이 (residual)의 제곱을 최소화시키는 조건을 사용한다. 그러나 직선의 기울기가 매우 커지는 경우에는  데이터에 들어있는 outlier에 대해서는 그 차이가 매우 커지는 경우가 발생할 수도 있어 올바른 피팅을 방해할 수 있다. 이를 수정하는 간단한 방법 중 하나는 $y$값의 차이를 이용하지 않고 데이터와 직선 간의 최단거리를 이용하는 것이다. 

수평에서 기울어진 각도가 $\theta$이고 원점에서 거리가 $s$인 직선의 방정식은 

$$ x \sin \theta - y \cos \theta + s=0$$

이고, 한 점 $(x_i, y_i)$에서 이 직선까지 거리는

$$ d_i = | \sin \theta y_i - \cos \theta x_i + s|$$

이다. 따라서 주어진 데이터에서 떨어진 거리 제곱의 합이 최소인 직선을 구하기 위해서는 다음을 최소화시키는 $\theta, s$을 구해야 한다. $$ L = \sum_i \big( \sin \theta x_i - \cos \theta y_i +s \big)^2 $$$$ (\theta, s)=\text{argmin}(L)$$

$\theta$와 $s$에 대한 극값 조건에서 

$$\frac{1}{2} \frac{\partial L}{\partial \theta} = \frac{1}{2} \sin 2 \theta \sum_i (x_i^2 - y_i^2) - \cos 2 \theta \sum x_i y_i + s \sin \theta \sum_i x_i + s \cos \theta \sum_i y_i = 0$$

$$ \frac{1}{2}\frac{\partial L}{\partial s}=\cos \theta \sum y_i  - \sin \theta \sum_i x_i - N s=0$$

주어진 데이터의 질량중심계에서 계산을 수행하면 $\sum_i x_i = \sum_i y_i =0$ 이므로 데이터의 2차 모멘트를 $$ A= \sum_i (x_i^2 - y_i^2), \qquad B = \sum_i x_i y_i $$로 놓으면 직선의 파라미터를 결정하는 식은

$$ \frac{1}{2} A \sin 2 \theta   - B \cos 2 \theta = 0  \qquad \to \quad  \tan 2\theta = \frac{2B}{A} \\ s = 0$$

두 번째 식은 직선이 질량중심(질량중심계에서 원점)을 통과함을 의미한다. 첫번째 식을 풀면

$$ \tan \theta = \frac{- A \pm \sqrt{A^2 + (2B)^2 }}{2B}$$

두 해 중에서 극소값 조건을 만족시키는 해가 직선을 결정한다. 그런데

$$ \frac{1}{2}\frac{\partial^2 L}{\partial \theta^2}=  A \cos 2 \theta + 2B \sin 2 \theta = \pm \sqrt{A^2 + (2B)^2}  >0$$

이므로 위쪽 부호로 직선($x\sin \theta = y\cos \theta$)이 정해진다. 질량중심계에서는 원점을 지나지만 원좌표계로 돌아오면 데이터의 질량중심을 통과하도록 평행이동시키면 된다.

$$  \left(-A+ \sqrt{A^2+ (2B)^2} \right)  (x-\bar{x}) = 2B (y - \bar{y})  $$

여기서 주어진 데이터의 질량중심은 원좌표계에서

$$ \bar{x} = \frac{1}{N} \sum_i x_i, \quad \bar{y} = \frac{1}{N} \sum_i y_i$$

이다. 또한 원좌표계에서 $A$와 $B$의 계산은 

$$ A = \sum_i [ (x_i - \bar{x})^2 - (y_i - \bar{y})^2], \qquad B = \sum (x_i  - \bar{x})(y_i - \bar{y})$$

이 결과는 데이터 분포에 PCA를 적용해서 얻은 결과와 동일하다. PCA에서는 공분산 행렬의 고유값이 큰 쪽에 해당하는 고유벡터가 직선의 방향을 결정했다. https://kipl.tistory.com/211.  또한 통계에서는 Deming regression이라고 불린다.

 

PCA Line Fitting

평면 위에 점집합이 주어지고 이들을 잘 기술하는 직선의 방정식을 구해야 할 경우가 많이 발생한다. 이미지의 에지 정보를 이용해 선분을 찾는 경우에 hough transform과 같은 알고리즘을 이용하는

kipl.tistory.com

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Approximate Distance Transform  (0) 2024.06.02
Graph-based Segmentation  (1) 2024.05.26
Cubic Spline Kernel  (1) 2024.03.12
Ellipse Fitting  (0) 2024.03.02
Bilateral Filter  (0) 2024.02.18
,

평면 위에 점집합이 주어지고 이들을 잘 기술하는 직선의 방정식을 구해야 할 경우가 많이 발생한다. 이미지의 에지 정보를 이용해 선분을 찾는 경우에 hough transform과 같은 알고리즘을 이용하는 할 수도 있지만 수치해석적으로 직접 fitting을 할 수도 있다. 점집합의 데이터를 취합하는 과정은 항상 노이즈에 노출이 되므로 직선 위의 점뿐만 아니라 직선에서 (많이) 벗어난 outlier들이 많이 들어온다. 따라서 line-fitting은 이러한 outlier에 대해서 매우 robust 해야 한다. 데이터 fitting의 경우에 초기에 대략적인 fitting에서 초기 파라미터를 세팅하고, 이것을 이용하여서 점차로 정밀하게 세팅을 해나가는 반복적인 방법을 많이 이용한다. 입력 데이터가 $\{(x_i, y_i)| i=0,..., N-1\}$로 주어지는 경우에 많이 이용하는 최소자승법에서는 각 $x_i$에서 직선상의 $y$ 값과 주어진 $y_i$의 차이(residual)의 제곱을 최소로 하는 직선의 기울기와 $y$ 절편을 찾는다. 그러나 데이터가 $y$축에 평행하게 분포하는 경우를 다루지 못하게 되며, 데이터 점에서 직선까지 거리를 비교하는 것이 아니라 $y$값의 차이만 비교하므로 outlier의 영향을 매우 심하게 받는다.

이러한 문제를 제거 또는 완화하기 위해서는 PCA(principal axis analysis)를 이용할 수 있다. 점들이 선분을 구성하는 경우, 선분 방향으로는 점 위치의 편차가 크지만 수직 방향으로는 편차가 상대적으로 작다. 따라서 평면에서 점 분포에 대한 공분산 행렬 $\tt Cov$의 고윳값과 고유 벡터를 구하면, 큰 고윳값을 갖는 고유 벡터 방향이 선분의 방향이 될 것이다.

$$ {\tt Cov}[\{ (x_i, y_i)\}]=\frac{1}{N} \begin{pmatrix} \sum (x_i- \bar{x})^2 & \sum(x_i-\bar{x})( y_i-\bar{y}) \\ \sum (x_i-\bar{x})( y_i-\bar{y})  & \sum (y_i- \bar{y})^2   \end{pmatrix}$$

잘 피팅이 이루어지려면 두 고윳값의 차이가 커야 한다. 또한 outlier에 robust 한 피팅이 되기 위해서는 각 점에 가중치를 부여해서 공분산 행렬에 기여하는 가중치를 다르게 하는 알고리즘을 구성해야 한다. 처음 방향을 설정할 때는 모든 점에 동일한 가중치를 부여하여 선분의 방향을 구한 후 다음번 계산에서는 직선에서 먼 점이 공분산 행렬에 기여하는 weight를 줄여 주는 식으로 하면 된다. weight는 점과 직선과의 거리에 의존하나 그 형태는 항상 정해진 것이 아니다.

 

// 점에서 직선까지 거리;
double DistanceToLine(CPoint P, double line[4]) {
    // 중심에서 P까지 변위;
	double dx = P.x - line[2], dy = P.y - line[3]; 
    // 직선의 법선으로 정사영 길이 = 직선까지 거리;
    return fabs(-line[1] * dx + line[0] * dy);
}
// PCA-방법에 의한 line-fitting;
double LineFit_PCA(std::vector<CPoint>& P, std::vector<double>& weight, double line[4]) {
    // initial setting: weight[i] = 1.;
    // compute weighted moments;
    double sx = 0, sy = 0, sxx = 0, syy = 0, sxy = 0, sw = 0;
    for (int i = P.size(); i-->0;) {
         int x = P[i].x, y = P[i].y;
         double w = weight[i]; 
         sx += w * x; sy += w * y;
         sxx += w * x * x; syy += w * y * y;
         sxy += w * x * y; 
         sw  += w; 
    }
    // variances;
    double vxx = (sxx - sx * sx / sw) / sw;
    double vxy = (sxy - sx * sy / sw) / sw;
    double vyy = (syy - sy * sy / sw) / sw;
    // principal axis의 기울기;
    double theta = atan2(2 * vxy, vxx - vyy) / 2;
    line[0] = cos(theta); 
    line[1] = sin(theta);
    // center of mass (xc, yc);
    line[2] = sx / sw; 
    line[3] = sy / sw;
    // line-eq:: sin(theta) * (x - xc) = cos(theta) * (y - yc);
    // calculate weights w.r.t the new line;
    std::vector<double> dist(P.size());
    double scale = 0;
    for (int i = P.size(); i-->0;) {
        double d = dist[i] = DistanceToLine(P[i], line);
        if (d > scale) scale = d;
    }
    if (scale == 0) scale = 1;
    for (int i = dist.size(); i-->0; ) {
        double d = dist[i] / scale;
        weight[i] = 1 / (1 + d * d / 2);
    }
    return fitError(P, line);
};
void test_main(std::vector<CPoint>& pts, double line_params[4]) {
    // initial weights = all equal weights;
    std::vector<double> weight(pts.size(), 1); 
    while (1) {
       double err = LineFit_PCA(pts, weight, line_params) ;
       //(1) check goodness of line-fitting; if good enough, break loop;
       //(2) re-calculate weight, normalization not required.
     }
};

아래 그림은 weight를 구하는 함수로 $weight= 1 /\sqrt{1+dist\times dist}$를 이용하고, fitting 과정을 반복하여 얻은 결과다. 상당히 많은 outlier가 있음에도 영향을 덜 받는다. 파란 점이 outlier이고, 빨간 직선은 outlier가 없는 경우 fitting 결과고, 파란 선은 outlier까지 포함한 fitting 결과다.

##: 네이버 블로그에서 이전;

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Fast Float Sqrt  (0) 2020.12.27
2차원 Gaussian 분포 생성(creating a 2d Gaussian distribution)  (0) 2020.12.10
Histogram Equalization  (0) 2020.11.12
Least Squares Fitting of Circles  (0) 2020.11.11
Integer Sqrt  (0) 2020.11.11
,

이미지에서 관찰된 점집합이 $\{(x_i, y_i)| i = 1, 2,\dots, N\}$이 있다. 이 점집합을 직선 $y = a + bx$ 로 피팅을 하고 싶을 때, 보통 최소자승법을 이용하는데, 원리는 직선의 방정식이 예측한 $y$값과 실제 관찰한 $y$값의 차이의 제곱(=square deviation)을 최소화시키는 직선의 기울기 $a$와 절편 $b$를 찾는 것이다:

$$\chi^2(a, b) = \sum_i |y_i - (b x_i +a) |^2 $$

데이터를 얻는 측정 과정에서 측정값 $y_i$는 랜덤 노이즈를 포함하게 되고, 이 노이즈는 참값 $y(x)$ 근방에서 정규분포를 한다고 가정을 할 수 있다. 만약 모든 측정의 노이즈가 동일한 표준편차 $\sigma$를 갖게 된다면, $N$개의 관측 데이터가 나타날 확률(likelihood)은 (개별 측정은 IID 조건을 만족한다고 전제)

$$P = \prod_{i} e^{ -\frac{ | y_i -  (bx_i + a)|^2 }{2\sigma^2 }  }$$

의 형태가 된다. 따라서 최소자승법은 이 likelihood를 최대화시키는 파라미터를 찾는 방법이 된다. 최소자승법은 피팅 파라미터를 주어진 데이터를 이용해서 표현할 수 있는 장점은 있지만, outliers에 대해서 매우 취약하다 (아래의 결과 그림을 참조). 이는 적은 수의 outlier도 χ2에 큰 기여를 할 수 있기 때문이다. 따라서 피팅을 좀 더 robust 하게 만들기 위해서는 outliers가 likelihood에 기여하는 정도를 줄여야 한다. 이를 위해서는 likelihood의 지수 인자를 큰 에러에서 덜 민감하게 반응하는 꼴로 바뀌어야 한다. 이를 만족하는 가장 간단한 것 방법 중 하나가 square-deviation 대신에 absolute-deviation을 이용하는 것이다:

$$\text{absolute deviation} = \sum _i | y_i - (bx_i + a)|   .$$

그러나 이 식을 사용하는 경우에는 최소자승법과 다르게 기울기 $a$와 절편 $b$를 주어진 데이터 $\{(x_i, y_i)\}$로 표현할 수 없고, 반복적인 방법을 이용해서 찾아야 한다. 


수열 $\{c_i\}$에 대해
합 $\sum_{i} |c_i - a|$
은 $a$가 수열의 median 값일 때 최솟값을 갖는다는 사실을 이용하면 (증명: 극값을 구하기 위해서 $a$에 대해서 미분하면, $0=(\sum_{c_i > a} 1)-(\sum_{c_i < a} 1)$: 합은 $a$가 $c_i$ 보다 큰 경우와 작은 경우로 분리. 따라서 0이 되기 위해서는 작은 경우와 큰 경우의 수가 같아야 한다. 고로, $a = \text{median}\{c_i\}$ q.e.d.). 고정된 절편 $b$에 대해서 absolute deviation을 최소로 만드는 기울기 $a$는

$$a= \text{median} \{ y_i - b x_i\}$$

임을 알 수 있다. 그리고  absolute deviation 식을 절편 $b$에 대해서 미분해서

$$0 = \sum_i \text{sign} \left( y_i - (bx_i +a) \right)$$

을 얻는데, 위에서 구한 기울기 $a$를 대입한 후 bracketing and bisection 방법을 이용하면 절편 $b$를 얻을 수 있다(불연속 함수이므로 일반적으로 근을 구하는 방법을 사용하는 것은 위험하다). 아래의 코드는 이를 구현한 것이다.

 

double FitLine_LS(std::vector<double>& x, std::vector<double>& y, double *a, double *b);

더보기
// 최소자승법을 이용한 직선 추정:
// return (sigma[dy] / sigma[x]);
double FitLine_LS(std::vector<double>& x, std::vector<double>& y, double& a, double& b) {
    double sx = 0, sy = 0, sxx = 0, sxy = 0;
    for (int i = x.size(); i-->0;) {
        sx  += x[i];        sy  += y[i];
        sxx += x[i] * x[i]; sxy += x[i] * y[i];
    };
    const int n = x.size();
    double det = n * sxx - sx * sx;
    if (det == 0.) return -1;                   // vertical line;
    a = (sxx * sy - sx * sxy) / det;
    b = (n * sxy - sx * sy) / det;
    double chi2 = 0;
    for (int i = x.size(); i-->0;) {
        double t = y[i] - (*a + *b * x[i]);
        chi2 += t * t;
    }
    det /= n;         //det -> var(x) * n;
    // chi2 = var(dy) * n;
    // (dy vs x의 편차비)
    return  sqrt(chi2 / det);
}
// 기울기(bb)가 주어진 경우에 y-절편(median = aa)값을 추정하고, 이 때 AD값을 얻는다.
double RhoFunc(std::vector<double>& x, std::vector<double>& y,
               double bb, double& aa, double& abdev) {
    std::vector<double> h(x.size());
    for (int i = x.size(); i-->0;) h[i] = y[i] - bb * x[i];
    std::sort(h.begin(), h.end());
    // median;
    const int med = h.size()/2;
    aa = (h.size() & 1) ? h[med] : (h[med] + h[med-1])/2;

    double sum = 0;
    abdev = 0;
    for (int i = x.size(); i-->0;) {
        double d = y[i] - (bb * x[i] + aa);
        abdev += fabs(d);
        // sign-함수의 원점에서 모호함을 없애기 위해서 증폭을 시킴;
        if (y[i] != 0.) d /= fabs(y[i]);
        if (fabs(d) > DBL_EPSILON) // sign 함수의 모호함에서 벗어나면,
            sum += (d >= 0 ? x[i] : -x[i]);
    }
    return sum; // return sum{xi * sign(yi - (b * xi + a))}
};
// y = a + b * x ;
// Least Absolute Deviation:
double FitLine_MAD (std::vector<double>& x, std::vector<double>& y,
                    double& a, double& b) {
    // least square esimates for (aa, bb);
    double aa, bb, abdev;
    double sigb = FitLine_LS(x, y, aa, bb);   // estimate: y=aa + bb*x;
    double b1 = bb;
    double f1 = RhoFunc(x, y, b1, aa, abdev);
    /* bracket 3-sigma away in the downhill direction;*/
    double b2 = fabs(3 * sigb);
    b2 = bb + (f1 < 0 ? -b2 : b2);
    double f2 = RhoFunc(x, y, b2, aa, abdev);

    // if conditional added to take care of the case of a
    // line input into this function. It is needed to avoid an
    // infinite loop when (b1 == b2) (within floating point error)
    if (fabs(b2 - b1) > (sigb + 0.005)) {
        // bracketing;
        while ((f1 * f2) > 0) {
            bb = 2 * b2 - b1;
            b1 = b2; b2 = bb; 
            f1 = f2; f2 = RhoFunc(x, y, b2, aa, abdev) ;
        }
    }
    // refine until the error is a negligible number of std;
    sigb *= 0.01;
    while (fabs(b2 - b1)> sigb) {
        // bisection;
        bb = (b1 + b2) / 2.;
        if ((bb == b1) || (bb == b2)) break ;
        double f = RhoFunc(x, y, bb, aa, abdev) ;
        if ((f * f1) >= 0) {
            f1 = f; b1 = bb;
        } else {
            f2 = f; b2 = bb;
        }
    }
    a = aa; b = bb; 
    return (abdev/x.size());
}

// 붉은 선--> 최소자승법에 의한 피팅.: outlier에 매우 취약한 구조.
// 파란 선--> least absolute deviation을 이용한 피팅: outlier에 매우 robust 하다.

728x90

'Image Recognition' 카테고리의 다른 글

RANSAC: Circle Fit  (0) 2008.07.21
KMeans Algorithm  (0) 2008.07.19
EM: Binarization  (0) 2008.07.01
EM Algorithm: Line Fitting  (0) 2008.06.29
Gaussian Mixture Model  (2) 2008.06.07
,