728x90

 

vliet9504.pdf
다운로드

Retinex 알고리즘은 영상의 밝기와 시각적으로 인지된 감각 사이에는 로그의 관계를 가진다는 사실과, 영상의 밝기는 실제의 밝기인 반사 성분과 조명에 의한 성분의 곱으로 주어진다는 실험적인 사실에 근거하여 영상에서 조명 성분을 줄이고, 반사 성분만을 나타냄으로써 영상의 콘트라스트를 증대시키고자 하는 시도이다

$$B(x, y)=R(x, y)\times I(x, y)$$

where

$$ B(x, y)=\mbox {observed image}$$

$$ R(x, y)=\mbox {perceived reflectance(조명 성분)}$$

$$ I(x, y)=\mbox {perceived illumination(반사 성분)}$$

따라서, 

$$\log R(x, y)= \log B(x, y) - \log I(x, y)$$

조명 성분을 구하기 위해서는 영상의 디테일에 의존하지 않는 큰 스케일에서의 영상 성분만 보면 된다 (low frequency 성분). 따라서 조명 성분은 원영상을 적당한 스케일($s$)로 blurring 한 영상에서 얻을 수 있다.

$$I\sim Gaussfilter(s)* B.$$

물론, 여러 스케일을 조합을 하여서 사용을 할 수 있다. 멀티 스케일을 적용하는 경우에 retinex 알고리즘에서 반사 성분은 (각 스케일의 기여에 같은 가중치를 준 경우)

$$Dst(x, y) = \sum_{s\in scales} \left(\log [Src(x, y)] - \log [ (Gaussfilter(s) * Src)(x, y)] \right)$$

이다. 

 

아래 코드는 출력 영상의 dynamic range를 $[m-1.2\sigma, m+1.2\sigma]$로 한정한 후, 픽셀 값을 $[0.255]$로 stretching 하였다. 픽셀 값에 $\log$를 취할 때는 $\log(0)$을 막기 위해서 $\mbox+1$을 하였다. 컬러 영상은 각각의 RGB 성분에 대해서 그레이 영상의 retinex process을 적용하면 된다.


Q: How to find a optimal scale distribution for a given image?

#define SQR(x) ((x)*(x))
// recursive 가우시안 필터의 계수 계산;
void compute_coefs3 (double c [5], double sigma) {

더보기
    /*
    *  "Recursive Implementation of the gaussian filter.",
    *   Ian T. Young , Lucas J. Van Vliet, Signal Processing 44, Elsevier 1995.
    */
    double q = 0;   
    if (sigma >= 2.5)
        q = 0.98711 * sigma - 0.96330;
    else if ((sigma >= 0.5) && (sigma < 2.5))
        q = 3.97156 - 4.14554 * (double) sqrt ((double) 1 - 0.26891 * sigma);
    else
        q = 0.1147705018520355224609375;
    
    double q2 = q * q;
    double q3 = q * q2;
    c[0] = (1.57825+(2.44413*q)+(1.4281 *q2)+(0.422205*q3));
    c[1] = (        (2.44413*q)+(2.85619*q2)+(1.26661 *q3));
    c[2] = (                   -((1.4281*q2)+(1.26661 *q3)));
    c[3] = (                                 (0.422205*q3));
    c[4] = 1.0 - (c[1]+c[2]+c[3])/c[0];
}

// 멀티스케일 설정;
void retinex_scale_distribution(const int nscales/*=3*/, const int s/*=240*/,
                                double scales []) {

더보기
    //  ASSERT(nscales>=3);
    double size_step = (double) s / (double) nscales;
    for (int i = 0; i < nscales; ++i)
        scales[i] = 2. + (double) i * size_step;
}

// 가우시안  convolution(recursive);

void gausss_mooth (double *in, int size, int rowstride, double *out, double b [5]) {

더보기
    /* forward pass */
    int bufsize = size + 3;
    size -= 1;
    double *w1 = new double [bufsize];
    double *w2 = new double [bufsize];
    memset(w1, 0, sizeof(double) * bufsize);
    memset(w2, 0, sizeof(double) * bufsize);
    w1[0] = in[0];
    w1[1] = in[0];
    w1[2] = in[0];
    for (int i = 0, n = 3; i <= size ; i++, n++) {
        w1[n] = (double)(b[4] * in[i * rowstride] + ((b[1] * w1[n - 1] + b[2] * w1[n - 2] + b[3] * w1[n - 3] ) / b[0]));
    }
    /* backward pass */
    w2[size + 1] = w1[size + 3];
    w2[size + 2] = w1[size + 3];
    w2[size + 3] = w1[size + 3];
    for (int i = size, n = i; i >= 0; i--, n--) {
        w2[n] = out[i * rowstride] = (double)(b[4] * w1[n] + ((b[1] * w2[n + 1] + b[2] * w2[n + 2] + b[3] * w2[n + 3] ) / b[0]));
    }
    delete [] w1;
    delete [] w2;
}
 

// 이미지의 평균과 표준편차 계산;
void image_statistics(double *img, int size/*=width*height*/,
                     double *mean, double *std) {

더보기
    double s = 0, ss = 0;
    for (int i = 0; i < size; i++) {
        double a = img[i];
        s += a;
        ss += SQR(a) ;
    } ;
    *mean = s / size ;
    *std = sqrt((ss - s * s / size) / size);
}

//
void rescale_range(double *data, int size) {

더보기
    double mean, sig;
    image_statistics(&data[0], size, &mean, &sig);
  
    double max_val = mean + 1.2 * sig;
    double min_val = mean - 1.2 * sig;    
    double range = max_val - min_val;
    if (!range) range = 1.0;
    range = 255. / range ;
    // change the range;
    for (int i = 0; i < size; i++) { 
        data[i] = (data[i]-min_val) * range;
    }
}

// 메인.

void retinex_process(double *src, int width, int height, double *dst) {
    const int nfilter = 3;
    double sigma[nfilter];
    double c[5];
    int default_scale = 240;
    retinex_scale_distribution(nfilter, default_scale, sigma);
    int csize = width * height;
    double *in = new double [csize];
    double *out = new double [csize];
    memset(dst, 0, csize * sizeof(double));
    // scale-space gauss_smooth;
    for (int i = 0; i < nfilter; i++) {
        compute_coefs3(c, sigma[i]);
        // copy src to temp. buffer(=in);
        for (int pos = 0; pos < csize; pos++) 
            in[pos] = double(src[pos] + 1.0);
        // (1) horizontal convolution(stride = 1 for grey);
        for (int y = 0; y < height; y++) 
            gauss_smooth(&in[y * width], width, 1, &out[y * width], c);
        // (2) vertical convolution(stride = height for grey);
        memcpy(in, out, csize * sizeof(double));
        for (int x = 0; x < width; x++) 
            gausss_mooth(&in[x], height, width, &out[x], c);
        // 각 스케일에서 반사 성분을 누적;
        for (int pos = 0; pos < csize; pos++) 
            dst[pos] += log(src[pos]+1) - log(out[pos]);
    }
    // scale to [0,255];
    rescale_range(&dst[0], csize); 
    delete [] in;
    delete [] out;
};

/** 2020.11.24.일 수정됨;**/

원본 이미지;

사용자 삽입 이미지

 

가우시안 Convolution 결과(sigma[0]=2);

 

가우시안 Convolution 결과(sigma[1]=82);

 

가우시안 Convolution 결과(sigma[2]=162);

 

결과 이미지(scale=240)

사용자 삽입 이미지

 

 

'Image Recognition' 카테고리의 다른 글

Mean Shift Filter  (5) 2008.08.06
Chamfer Match  (0) 2008.08.01
Retinex Algorithm  (2) 2008.07.26
RANSAC: Circle Fit  (0) 2008.07.21
KMeans Algorithm  (0) 2008.07.19
Robust Line Fitting  (0) 2008.07.08
Posted by helloktk

댓글을 달아 주세요

  1. 2016.09.14 16:57  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

  2. june 2019.09.25 19:59  댓글주소  수정/삭제  댓글쓰기

    컨볼루션 함수에서 생략된 부분도 올려주실 수 없나요?