지구 표면의 온도는 1년을 단위로 거의 주기적으로 변한다. 그럼 땅속의 온도는 시간과 깊이에 따라 어떻게 변할까? 지표면이 태양으로부터 받은 열은 일부는 반사되고 일부는 땅속으로 전달된다. 땅속에서 온도의 변화는 열방정식에 의해서 표현할 수 있다. 땅속의 온도분포 $u$가 지표면에서 깊이 $x$와 시간 $t$에만 의존한다면 $u(x,t)$가 만족하는 열방정식은(거리척도를 적당하게 잡아 계수를 단순화시킨다)

$$ u_t(x,t) = u_{xx} (x,t)$$

로 주어진다. $u(x,t)$가 $t$에 대해서 주기가 $1$년인 주기함수이므로 Fourier 급수를 이용해서 방정식을 풀도록 하자. 

\begin{gather} u(x,t) = \sum _{n=-\infty}^{\infty} C_n (x) e^{i 2\pi n t} \\ C_n(x)= \int_0^1 u(x,t) e^{-i 2\pi n t} dt \end{gather}

Fourier 계수 $C_n(x)$를 두 번 미분하면

\begin{align} \frac{d^2 C_n(x)}{dx^2} & = \int_0^1 u_{xx}(x,t) e^{-i 2 \pi n t} dt \\ &= \int_0^1  \frac{ \partial u (x,t)}{\partial t} e^{-i 2 \pi n t} dt \\ &= i 2\pi n \int_0^1 u(x,t) e^{-i 2 \pi n t} dt \\ &= i 2 \pi n C_n(x)\end{align}

이므로 $C_n$은 다음의 방정식을 만족해야 한다.

$$ \frac{d^2 C_n (x)}{dx^2}  = i 2\pi n C_n (x) $$

깊이 $x$가 증가할 때 온도가 발산하지 않는 조건을 고려하면 이 방정식의 해는 

$$ C_n (x) = \left\{ \begin{matrix}  A_n e^{- \sqrt{\pi n} (1+i)x}~~~n \ge 0 \\A_n e^{ -\sqrt{\pi |n|}(1-i)x}~~~n<0 \end{matrix} \right.$$

로 쓸 수 있음을 쉽게 알 수 있다. 따라서 열방정식의 해 $u(x,t)$는

$$ u(x,t) = \sum _{n=- \infty}^{\infty} A_n e^{- \sqrt{\pi  |n| }x} e^{ i (2\pi n t - \text{sign}(n) \sqrt{\pi |n| } x) }   $$

처럼 쓰인다. 온도는 깊이에 따라 감쇄를 하여 계절에 따른 온도변화가 점점 작아진다. 그리고 깊이에 따른 위상이 추가되므로 지표면에서의 온도변화와 다른 양상을 가지게 된다. 이를 구체적으로 보기 위해서 계절에 따른 지표면에서 온도 $u(x=0,t)$을 간단히 시간 $t$에 대한 사인함수로 근사하자. 이 경우 평균온도가 0인데, 평균온도가 0이 아니 경우는 여기서 구한 해에  평균온도만큼을 더해주면 된다.

$$u(0, t) = \sin (2\pi t)$$

지표면에서 Fourier 계수는 

\begin{align} C_n(0) =A_n  &= \int_0^1 u(0,t)   e^{-i 2\pi n t} dt \\ &=\left\{  \begin{matrix} \pm \frac{1}{2i} ~~~n=\pm 1 \\ 0~~\text{otherwise}  \end{matrix} \right. \end{align}

따라서 해는 

\begin{align} u(x,t) &= \frac{1}{2i} e^{-\sqrt{\pi}(1+i)x} e^{i2 \pi t} -\frac{1}{2i} e^{-\sqrt{\pi} (1-i)x }e^{-i 2\pi t} \\ &= e^{-\sqrt{\pi} x} \sin (2 \pi t - \sqrt{\pi}x) \end{align}

해를 보면 온도는 깊이에 따라 감쇄를 하여 온도변화가 점점 사라지고, 시간에 대해서는 깊이에 따른 위상변화가 생긴다. 특히 깊이 $x= \sqrt{\pi}$에서는 위상이 $\pi$ 만큼 변해서 지표면에서의 시간에 대한 온도변화와 완전히 반대로 행동한다. 즉, 겨울에는 따뜻하고 여름에는 시원해진다. 물론 이 깊이는 땅의 열확산계수($\kappa$)에 따라 달라진다. 열확산계수를 고려하려면 $x \to x/\sqrt{\kappa}$을 사용하면 된다. 땅의 열확산계수가 $\kappa \sim 0.1\times 10^{-6} \rm{m^2 / s=3.15 m^2/yr}$ 정도이므로 $x=\sqrt{\kappa \pi} \sim 3 \rm m$이다. 즉, 땅 속 깊이 $x\sim 3\rm m$ 정도이면 온도변화는 지표면의 $e^{-\pi}=0.043$배 정도로 줄어들고 겨울이 여름보다 상대적으로 더 따뜻하게 된다.

이는 물리적으로 쉽게 이해를 할 수 있는 현상으로 깊이 들어갈수록 온도차가 작아져서 열전달이 느려지므로 상대적으로 빨리 변하는 표면에서의 온도변화에 맞추지 못하여 변화가 지연되어 나타나는 것으로 볼 수 있다.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728x90

'Mathematics' 카테고리의 다른 글

n 차원 공의 부피  (2) 2024.02.07
타원의 둘레길이  (1) 2024.02.06
Rejection Sampling  (0) 2023.02.20
Fourier Series를 이용한 Isoperimetric Inequality 증명  (0) 2023.02.01
Brachistochrone inside the Earth  (0) 2023.01.25
Posted by helloktk
,