동물이 달릴 때 다리와 바닥 사이의 마찰력으로 가속을 하거나 감속할 수 있다. 개가 얼마나 가속/감속을 할 수 있는가는 사냥개로써의 특성에 중요한 요소 중 하나이다. 그럼 어떤 신체적인 요건이 이를 결정하는 알아보기 위해 우선 개를 그림과 같이 간단히 강체로 근사를 하여 가능한 가속도를 구해보자.
개의 가속도가 $a_x$일 때, 뉴턴의 운동 방정식을 세우면
$$ \sum F_x = f_f + f_h = m a_x ,$$
$$ \sum F_y = N_f + N_h -m g = 0$$
그리고 넘어지지 않고 안정적으로 가속하기 위해서는 회전하지(넘어지지) 않아야 한다. 질량중심에 대한 회전운동방정식을 적으면
떠있는 공+줄 부분에 작용하는 힘: 공의 무게와 줄의 무게, 그리고 바닥의 정지해 있는 줄이 뜨기 위해서는 impulsive force가 필요하다. 만약 질량 $dm$이 속도 $0\rightarrow v$로 변하면 운동량 변화가 $dp = dm(v-0)$이므로 필요한 충격력은 $f = v \frac{dm}{dt}$(위쪽)이다. 따라서 공중에 떠 있는 부분이 받는 반작용(장력) 충격력은 $-f $이다.
공의 높이가 $y$일 때 공중에 떠 있는 부분에 뉴턴의 운동방정식을 쓰면(위쪽:+)
$$ (M+ \lambda y) \frac{dv}{dt}= \sum F = -(M + \lambda y) g -f $$
운동량이 $P= (M+ \lambda y)v$이므로 운동 방정식은 다시
$$ \frac{dP}{dt} = -(M+ \lambda y ) g$$
로 쓸 수 있다. (Note: 이는 이미 공중에 있는 부분과 추가되는 $dm$ 부분을 하나의 계로 보므로 충격력은 내력이 되어서 합력에 나타나지 않는다)
$P$를 높이 $y$의 함수로 볼 수 있으므로 $\frac{dP}{dt} = \frac{dP}{dy}\frac{dy}{dt} = \frac{dP}{dy} v = \frac{P}{M + \lambda y}\frac{ dP}{dy}$
그러나 단순진자의 진폭이 일정 이상 커져 작은 각 근사에서 벗어나면 주기는 진폭에 따라 달라짐이 잘 알려져 있다.
진자가 원호가 아닌 다른 곡선 위를 움직일 때 주기가 진폭에 무관하게 주어질 수 있는지 알아보자. 이 경우는 각보다는 용수철 진자처럼 평형점에서 움직인 거리를 이용해서 운동을 기술하는 것이 더 편리하다. 단순진자의 경우 평형점에서 잰 원호의 거리를 $s$라면 $s=L \theta$로 표현되고 작은 각 근사에서 운동 방정식은 $$ \ddot {s} =-\omega^2 s.$$
이제 진자가 움직이는 곡선에 어떤 제약이 들어오는지 살펴보자. 먼저 움직인 거리에 대한 운동 방정식은 단순조화운동식과 같아야 하므로 위의 형태는 변하지 않아야 한다. 진자가 움직이는 곡선이 $y(x)$로 표현되면 평형점($x=0$) 에서 움직인 거리($x <0$이면 움직인 거리의 음수)는
이 곡선은 반지름 $a$인 원이 $y=2a$인 수평선을 따라 구를 때, 원이 처음 $y=2a$와 접하는 점이 그리는 자취를 나타내고, $\psi$는 원의 중심과 그 점이 잇는 선분이 수직과 이루는 각이다.
Cycloid 모양을 결정하는 $a$가 정해지면 진자의 각진동수 $\omega=\sqrt{g/4a}$를 알 수 있고 주기는 $$T=\frac{2\pi}{\omega }= 4\pi \sqrt{\frac{a}{g}}$$
로 주어진다. 곡선이 주어졌으므로 처음 $y=h$에서 출발할 때 구체적으로 주기를 확인해 보자. 역학적 에너지가 보존되므로
\begin{align} E &=\frac{1}{2} m \Big( \frac{ds}{dt}\Big)^2 +\frac{1}{2} m \omega^2 s^2 \\&= \frac{1}{2} \Big( \frac{ds}{dt}\Big)^2 + mgy = mgh\\ \Longrightarrow~~ dt &= \pm \frac{ds}{\sqrt{2g(h-y)}} \end{align} 주기는 $y=h$에서 출발해서 바닥에 도달하는데 걸리는 시간의 4배이므로 \begin{align} T &= 4 \int_0^h \frac{ds}{\sqrt{2g(h-y)}} \\ &= \frac{4}{\sqrt{2g}} \int_{\pi/2}^{\psi_0} \frac{-4a d \cos (\psi/2)}{\sqrt{2a[\cos^2(\psi_0/2) - \cos^2(\psi/2)]}} \\ &=4\pi \sqrt{\frac{a}{g}}\end{align} 즉, 주기는 출발 높이에 무관하게 주기가 일정함을 알 수 있다.
공을 cycloid 모양으로 생긴 골짜기에 굴리면 등시운동을 하지만, 그럼 등시진자는 어떻게 만들수 있을까? 이 문제도 역시 cycloid로 해결이 된다. 위에서 구한 cycloid를 y방향으로 $-2a$ 만큼 평행이동시킨 모양을 고려하자. $$ \begin{matrix} x = a (\psi - \sin \psi) \\ y = a( \cos \psi - 1)\end{matrix}$$이 식으로 표현된 cycloid 모양의 천정을 만든 후(그림의 실선), 원점(꼭대기)에 길이 $L$인 줄을 고정시키고 끝에는 무거운 추를 매단다. 추을 진동을 시키면 줄의 일부는 cycloid 모양의 천정을 따라 접하고 나머지 부분은 직선의 형태로 된다.
줄과 cycloid가 접하는 끝지점을 $(x, y)$라 할 때 접하는 부분의 줄의 길이는 $$ \ell = \int_0^\psi ds = a \int_0^\psi \sqrt{ (1-\cos \psi')^2 + (\sin \psi')^2} d\psi' = 4a [1- \cos (\psi/2)]$$로 주어진다. $(x, y)$ 이후의 줄은 접선의 방향으로 나간다. 접선의 기울기를 $\frac{dy}{dx}=\tan \phi$로 놓으면 $\phi=\psi/2 - \pi/2$이고, 직선 부분의 길이가 $L- \ell$이므로 추의 위치는 $$ \begin{matrix} X = x + (L- \ell)\cos \phi = (L - 4a) \cos \phi + a(\psi + \sin \psi) \\ Y = y+(L-\ell) \sin \phi =(L-4a)\sin \phi - a(3+ \cos \psi) \end{matrix}$$로 주어진다. 줄의 길이를 $L=4a$로 선택하면 추의 위치 $(X, Y)$도 (평행이동된) cycloid(그림의 점선) 상에서 움직임을 알 수 있다. 따라서 이렇게 만들어진 추의 주기는 등시성을 갖는다. $$ \text{추의 위치:}~~\left\{ \begin{array}{l} X= a (\psi + \sin \psi) \\ Y = -a( 3 + \cos \psi)\end{array}\right. $$