Processing math: 100%

이미지에서 어떤 유용한 정보를 추출하기 위해서는 이미지가 담고 있는 객체들을 분리하는 작업을 해야 한다. 가장 단순한 것 방법 중의 하나가 이진화(binarization)이다. 이진화는 이미지를 픽셀 값에 따라 0과 1(또는 255)로 값만 가지는 이진 이미지로 변환하는 과정이다. 이진화 작업을 거치면 이미지가 담고 있는 객체를 배경에서 분리할 수 있다. 이때, 어떤 기준으로 픽셀을 분리하는가에 대한 문제가 생긴다. 기준이 되는 임계값(threshold value)의 설정에 대한 다양한 알고리즘이 알려져 있는데, 그중에서 통계적인 방법을 이용한 Otsu 알고리즘이 자연스러운 임계값을 준다.

Otsu 알고리즘은 classification 기법을 이용하고 있다. 임계값을 설정하는 데 있어 비용함수를 설정하고 그 비용함수의 최솟값을 주는 값으로 임계값을 취하는 방식이다. 그럼 어떻게 비용함수를 설정할 것인가? 이미지에서 나타나는 픽셀 값을 2개의 클래스로 분리할 때, 좋은 분리는 각각의 클래스에 속한 픽셀 값의 분포가 유사해야 한다. 즉, 같은 클래스에 들어 있는 픽셀 값의 분산이 작아야 한다는 의미다. 따라서 비용함수는 픽셀 수의 비율로 가중치를 준 각 클래스의 분산을 합산한 것이 될 것이고, 임계값은 이 비용함수를 최소화하는 픽셀 값이다.

     비용함수 = (가중치1 * 분산1) + (가중치2 * 분산2) <= 2개 클래스로 분리 시
                 =   q1 * V1 + q2 * V2 ;      

              q1 =  전체 이미지에서 클래스1에 해당하는 픽셀이 나타날 확률
              q2 =  전체 이미지에서 클래스2에 해당하는 픽셀이 나타날 확률
              V1 = 클래스1에서 픽셀 값의 분산.
              V2 = 클래스2에서 픽셀 값의 분산.

     임계값  -->  MIN ( 비용함수 )

이미지의 픽셀 값 분포는 히스토그램으로 표현되므로, 임계값은 히스토그램으로 분리하는 레벨 값이고, 클래스 1은 그 값보다도 작은 부분, 클래스 2는 큰 부분을 의미한다. 비용함수의 의미를 좀 더 살펴보기 위해서 식을 바꾸어서 적으면

   비용함수 = 전체 분산 - (가중치1*(전체평균 - 평균1)^2 + 가중치2*(전체평균 - 평균2)^2);
                 = V - (q1 * (m1 - m)^2  + q2 * (m2 - m)^2) ;
                         
              V = 전체 분산;
              m = 전체 평균,
              평균1 (m1) = 클래스1의 평균,
              평균2 (m2) = 클래스2의 평균,

여기서 q1*(m-m1)^2 + q2*(m-m2)^2는 클래스들의 분산이다. 전체 분산은 어떤 식으로 클래스를 분리하더라도 항상 일정한 값을 가지므로, 비용함수를 최소화하는 것은 클래스들의 분산을 최대화하는 것과 같다. 새로운 비용함수(엄밀한 의미로 이득함수다)를 이것으로 잡으면
 
             이득함수 = q1 * (m1 - m)^2 + q2 * (m2 - m)^2;
             임계값 --> MAX (이득함수)
 
새로운 이득함수는 약간의 계산을 하면 그 의미가 더 명확한 표현인
             
             이득함수 = q1 * q2 * (m1 - m2)^2 ;

로 쓸 수 있다. 즉, 클래스 분리하는 값은 두 클래스의 평균의 차이(가중치를 갖는)를 최대화시키는 값으로 주어진다.

이 알고리즘의 구현은 히스토그램의 각 레벨에 대해서 좌우를 각각 클래스 1과 2로 설정한 후 이득함수를 계산하여 최댓값을 업데이트하는 방식을 취한다. 0-번째 cumulative histogram과 1-번째 cumulative histogram을 사용하면 각 클래스의 가중치와 평균을 쉽게 계산할 수 있다. 
    cumulative_histogram_0th[k] = 0...k 까지 값이 나타날 확률.
    cumulative_histogram_1th[k]/
cumulative_histogram_0th[k] = 0...k까지 값의 평균.


Otsu 알고리즘은 2개의 클래스뿐만 아니라 여러 클래스로 히스토그램을 분리하도록 확장할 수 있다. 재귀 알고리즘을 이용하면 쉽게 구현할 수 있다. (see: kipl.tistory.com/258)

/* Otsu임계화 예: 설명을 위해 최적화는 하지 않은 것이다. 반드시 cumulative 히스토그램을 이용할 
** 필요는 없다:*/
/* 이득함수의 최대값을 주는 레벨이 연속적으로 여러개 나타나면 평균값을 취하도록 한다(2016.04.26)
*/ 
int OtsuThreshold(BYTE *src, int width, int height, BYTE *dst) {
    double hist[256] = {0.}, chist[256] = {0.}, cxhist[256] = {0.};
    int ntot = width * height;

    // make histogram ;
    for (int i = 0; i < ntot; i++) hist[src[i]] += 1.;
    // normalize;
    for (int i = 0; i < 256; i++) hist[i] /= ntot;

    // make 0-th and 1-st cumulative histogram;
    chist[0] = hist[0];
    cxhist[0] = 0;
    for (int i = 1; i < 256; i++) {
        chist[i] = chist[i - 1] + hist[i] ;               //0-th cumulative histogram ;
        cxhist[i] = cxhist[i - 1] + double(i) * hist[i] ; //1-st cumulative histogram ;
    };
    
    double gain_max = 0.;
    int thresh = 0;   
    double m = cxhist[255];                     //total mean = q1 * m1 + q2 * m2;
    int mul_count = 1;                          //number of degenerate maxima;
    for (int i = 0; i < 256; i++) {
        if (chist[i] == 0.) continue ;
        double q1 = chist[i] ;                  //weight1;
        double q2 = 1 - q1;                     //weight2;
        if (q2 == 0.) break;
        double m1 = cxhist[i] / q1;             //mean1 ;
        double m2 = (m - cxhist[i]) / q2;       //mean2 ;
        double gain = q1 * q2 * (m1 - m2) * (m1 - m2) ;
        if (gain_max < gain) {
            gain_max = gain; 
            thresh   = i;
            mul_count = 1;                      //reset mul_count=1;
        } else if (gain_max == gain)            //degenerate case;
            mul_count ++;
    }
    if (mul_count > 1) thresh = thresh + (mul_count - 1) / 2;    //2016.04.26;

    // threshold image;
    for (int i = 0; i < ntot; i++) dst[i] = (src[i] >= thresh) ? 0xFF : 0x00 ;

    return thresh;
}

 

사용자 삽입 이미지

 

히스토그램 (계산된 임계치는 100이다)

사용자 삽입 이미지

728x90

'Image Recognition > Fundamental' 카테고리의 다른 글

Bright Preserving Histogram Equalization with Maximum Entropy  (0) 2008.07.31
Adaptive Binarization  (2) 2008.07.14
Histogram Equalization  (0) 2008.06.22
FFT2D  (0) 2008.06.10
Hough Transform  (2) 2008.05.22
,

주어진 점집합에서 세 점을 뽑아서 만든 삼각형의 외접원에 다른 점이 하나도 포함하지 않으면 triangulation의 기본 삼각형 cell이 된다. 주어진 점으로 만들 수 있는 삼각형의 총개수가 nC3 이므로, 기본 삼각형을 찾기 위해서는 이들 각각의 삼각형에 대서 나머지 점을 가지고 incircle 테스트를 수행해야 한다. 따라서 이 알고리즘은 O(n4)의 스텝이 필요하게 된다.

/*brute force attack*/
foreach point p1
    foreach point p2 
        foreach point p3
            foreach point p4 
                if(incircle(p1,p2,p3,p4))
                    iscell=false;
                    break ;
            endfor;
            if(iscell) 
                 add(triangle(p1,p2,p3));
        endfor;
    endfor;
endfor;

세 점에 의해서 형성이 되는 외접원은 대수적으로 쉽게 구할 수 있다. 여기서는 좀 더 기하학적인 접근을 쓰면, 평면의 점은 

(x,y)(x,y,z=x2+y2)

의 mapping에 의해서 3차원 paraboloid 곡면의 점으로 옮길 수 있다. paraboloid 위의 세 점이 형성하는 3차원에서 평면이 paraboloid를 절단하는 곡선을 xy 평면으로 정사영하면 원이 된다는 것을 쉽게 알 수 있다.(incircle 포스팅 참조). 따라서 주어진 점이 세 점의 외접원에 포함되는가를 테스트하는 작업은 이 점을 paraboloid로 올렸을 때의 점과 (paraboloid로 올려진) 외접원의 3점이 형성하는 3차에서의 평면과 관계를 조사하는 것으로 바꿀 수 있다.

주어진 점이 외접원에 포함되면 paraboloid로 변환된 점은 평면의 아래에 놓이고, 외접원 밖의 점이면 평면 위에 놓이게 된다. 물론 외접원 위의 점은 평면에 놓인다. 따라서 평면의 법선 벡터 구하고, 삼각형의 한 꼭짓점을 기준한 주어진 점의 변위 벡터와 내적을 구하면 내적의 값은 평면 위인지, 아래인지 또는 평면에 놓인 점인가에 따라서 부호가 달라진다. 평면의 수직 벡터를 고정하면(예제는 아래 방향: nz<0), 평면 위에 놓인 점과의 내적은 음수, 평면 아래에 놓인 점과의 내적은 양수가 되고, 평면의 점과의 내적은 0이다. 

주어진 세 점이 만드는 외접원 내부(and 경계)에 들어가는 점이 없으면 이 삼각형을 선택한다.

** 참고 : Computational Geometry in C(2nd Edition) by Joseph O'Rourke

std::vector<Triple> dt4(const std::vector<double>& x, const std::vector<double>& y) {
    const int n = x.size();
    if (n < 3) return std::vector<Triple> (); // null_vec;
    std::vector<double> z(n);
    for (int i = 0; i < n; i++) 
        z[i] = x[i] * x[i] + y[i] * y[i] ;

    std::vector<Triple> triples;
    /* For each triple (i,j,k) */
    for (int i = 0; i < n - 2; i++ )
        for (int j = i + 1; j < n; j++ )
            for (int k = i + 1; k < n; k++ )
                if ( j != k ) {
                    /* Compute normal to triangle (i,j,k)::  outter_product(j-i, k-i)*/
                    double nx = (y[j] - y[i]) * (z[k] - z[i]) - (y[k] - y[i]) * (z[j] - z[i]); 
                    double ny = (x[k] - x[i]) * (z[j] - z[i]) - (x[j] - x[i]) * (z[k] - z[i]);
                    double nz = (x[j] - x[i]) * (y[k] - y[i]) - (x[k] - x[i]) * (y[j] - y[i]);
                    
                    /* Only examine faces on bottom of paraboloid: nz < 0. */
                    int flag = (nz < 0);
                    if (flag) {
                        /* For each other point m */
                        for (int m = 0; m < n; m++) {
                            /* Check if m above (i,j,k)::i점을 기준으로 m 과 
                            ** normal 간의 내적으로 체크(내적이 양수이면 
                            ** m이 원의 내부에 완전히 들어 있는 경우가 된다. 
                            ** 0인 경우는 원주상에 놓인 경우이므로 배제한다
                            */
                            flag &= ((x[m]-x[i])*nx + (y[m]-y[i])*ny + (z[m]-z[i])*nz <= 0);
                        }
                    }
                    if (flag) {
                        // (i, j, k)의 외접원이 다른 점을 포함하지 않으므로 이 삼각형은 
                        // 삼각분할의 한 면을 형성하게 된다.
                        triples.push_back(Triple(i, j, k));
                    }
                }
    return triples;
}

사용자 삽입 이미지

 

728x90

'Computational Geometry' 카테고리의 다른 글

Circle Drawing Algorithm  (1) 2008.06.03
Wu's Line Algorithm  (1) 2008.06.02
Polygon Triangulation (II)  (0) 2008.05.26
Polygon Triangulation  (4) 2008.05.25
Polygon Fill  (0) 2008.05.22
,

이미지에서 Voronoi diagram으로 영역을 분할할 때 각 픽셀이 어느 Voronoi cell에 포함되는가를 알아야 하는 경우가 있다. 보통은 Voronoi 다이어그램으로 구한 cell을 폴리곤으로 표현하고, 해당 픽셀이 어느 폴리곤에 들어가는 가는 체크 해야 한다. 그러나, 이 과정은 복잡하고 계산이 많이 발생한다. 이미지에 만들어진 Voronoi diagram의 경우 cell mask를 이용하면 해당 픽셀이 어느 cell에 들어있는지를 바로 판단할 수 있다. 특히, cell의 개수가 적은 경우 mask를 gray 이미지로 처리할 수 있어서 메모리 사용도 줄일 수 있다.

Voronoi diagram의 이미지화 과정은 Voronoi 알고리즘을 이용할 필요는 없고 단지 각 cell을 형성하는 픽셀들은 그 cell의 중심까지 거리가 다른 cell보다 가깝다는 사실만 이용한다.

void rasterize_voronoi(std::vector<CPoint>& vorocenter, 
                       BYTE *image, int width, int height) {
    std::vector<BYTE> red(vorocenter.size()), 
                      green(vorocenter.size()), 
                      blue(vorocenter.size());
    for (int i = vorocenter.size(); i-->0;) {
    	red[i]   = rand() % 256;
        green[i] = rand() % 256;
        blue[i]  = rand() % 256;
    }
    for (int y = 0; y < height; y++) {
        for (int x = 0; x < width; x++) {
            int min_id = 0; 
            int dist2_min = INT_MAX;
            for (int k = vorocenter.size(); k-->0;) {
                int dx = x - vorocenter[k].x;
                int dy = y - vorocenter[k].y;
                int dist2 = dx * dx + dy * dy;
                if (dist2 < dist2_min) {
                    dist2_min = dist2;
                    min_id = k;
                }
            }
            *image++ = blue[min_id];
            *image++ = green[min_id];
            *image++ = red[min_id];
        }
    }
    // draw cell center;
}

사용자 삽입 이미지

 

728x90

'Image Recognition' 카테고리의 다른 글

EM Algorithm: Line Fitting  (0) 2008.06.29
Gaussian Mixture Model  (2) 2008.06.07
RANSAC Algorithm  (0) 2008.05.24
Contour Tracing  (0) 2008.05.22
Gausssian Scale Space  (0) 2008.05.22
,