\begin{align} \Big( \frac { d\theta}{dt } \Big)^2 &= \frac {g}{\ell}\Big(\theta_0^2 -\frac {1}{12} \theta_0^4 - \theta^2 + \frac {1}{12} \theta^4+...\Big) \\ &= \frac{g}{\ell}(\theta_0^2 -\theta^2) \Big( 1 - \frac{1}{12} (\theta_0^2 + \theta^2)+...\Big)\end{align}로 써지는데 작은 각 근사를 벗어났을 때 가장 큰 기여를 하는 $-(\theta_0^2 + \theta^2 ) /12$항이 음의 기여를 한다. 이는 같은 위치에서 작은 각 근사를 할 때보다 각속도가 더 작아짐을 의미한다. 따라서 진자가 더 느리게 움직여서 주기가 길어질 것이라는 예측을 구체적인 계산 없이도 할 수 있게 된다.
이제 주기를 구해보자. 에너지 보존식에서 변수 분리를 해서 적분하면 주기에 대한 식
$$T = \int dt = 4 \sqrt {\frac {\ell}{2g}} \int_0^{\theta_0} {\frac {d\theta}{\sqrt {\cos \theta - \cos \theta_0}}}$$을 얻는다. 여기서 $\sin(\theta/2) = \sin (\theta_0/2) \sin(\varphi )$로 치환을 하면
진폭이 작은 경우($\theta_0 \ll 1 ~\Rightarrow ~k\rightarrow 0)$는 적분 값이 $\frac {\pi}{2}$이므로 $T \rightarrow 2\pi \sqrt {\frac {\ell}{g} }$가 됨을 확인할 수 있다. 위 적분은 타원 적분이라고 부르고 $k$가 주어지면 수치 연산을 통해서 그 값을 얻을 수 있다.
좀 더 직관적으로 진폭에 따른 주기의 변화를 보기 위해서 (진자의 경우 $k^2 \le \frac {1}{2}$이므로) 급수 전개를 하면,