728x90

n 차 Bezier 곡선은 두 개의 (n - 1) 차 Bezier 곡선의 선형보간으로 표현할 수 있다. Bezier 곡선은 Bernstein 다항식을 이용해서도 표현할 수도 있지만, 높은 찻수의 곡선일 때는 De Casteljau's Algorithm을 이용하는 것이 수치적으로 보다 안정적인 결과를 준다.

// De Casteljau's algorithm; recursive version;
double Bezier(double t, double n, double Q[]){
   if (n == 1) return Q[0];
   else return (1 - t) * Bezier(t, n - 1, &Q[0]) + t * Bezier(t, n - 1, &Q[1]);
}
// De Casteljau's algorithm; non-recursive. calling of Bezier() modifies Q's;
double Bezier(double t, double n, double Q[]){
    for (int k = 1; k < n; k++)
        for (int j = 0; j < (n - k); j++)
            Q[j] = (1 - t) * Q[j] + t * Q[j + 1];
    return Q[0];
}
void BezierCurve(std::vector<CfPt> &cntls,
                 int npts, std::vector<CfPt> &curves) {
    int n = cntls.size();
    std::vector<double> xp(n);
    std::vector<double> yp(n);
    for (int k = 0; k < n; k++) {
        xp[k] = cntls[k].x;
        yp[k] = cntls[k].y;
    }
    curves.resize(npts);    
    for (int i = 0; i < npts; ++i) {
        double t = double(i) / (npts - 1);
        curves[i].x = Bezier(t, n, &xp[0]);
        curves[i].y = Bezier(t, n, &yp[0]);
    }
}

'Computational Geometry' 카테고리의 다른 글

Flatness of Cubic Bezier Curve  (0) 2021.04.23
Convexity in Bezier Curve  (0) 2021.04.22
De Casteljau's Algorithm  (0) 2021.04.22
Bezier Curve Arc Length  (0) 2021.04.21
Bezier Curve Approximation of an Ellipse  (0) 2021.04.11
Bezier Curve Approximation of a Circle  (0) 2021.04.10
Posted by helloktk

댓글을 달아 주세요

728x90

곡선의 길이를 구하고자 하면 곡선을 따라 속력을 적분하면 된다. 곡선을 기술하는 벡터가 $\mathbf {B}(t) = [B_x(t), B_y(t)]$ 로 주어지면 곡선의 길이는

$$\text {Arc Length}(t_1, t_2) =\int_{t_1}^{t_2} | \mathbf {B}'(t)|dt=\int_{t_1}^{t_2} \sqrt{(B'_x(t))^2 + (B'_y(t))^2} dt.$$

그러나 일반적으로 이 적분은 닫힌 형태로 주어지지 않으므로 Gauss-Legendre quadrature와 같은 수치 적분에 의존해서 그 값을 계산하여야 한다.
Bezier curve의 경우는 기하학적인 방법을 이용하여서 좀 더 간편하게 그 길이를 구할 수 있다. Bezier curve의 길이에 대한 간단한 근사는 현의 길이($|\mathbf{Q}_3- \mathbf {Q}_0|$)로 근사하는 것이다. 그러나 현의 길이는 lower bound만을 준다. 다음으로 고려할 근사는  control 점 사이 거리의 합이다. 이것은 실제 길이의 upper bound를 준다. 따라서 근사적인 길이는 이 두 거리의 평균으로 잡으면 될 것이다:

$$ \text{Arc Length}\sim \frac{ \text {현의 길이} + \text {control point 사이 거리 합}}{2}.$$

그러나 이 근사가 유효하기 위해서는 현의 길이와 control point 간의 거리의 합

$$|\mathbf{Q}_3- \mathbf {Q}_2|+ |\mathbf {Q}_2- \mathbf {Q}_1| +|\mathbf {Q}_1- \mathbf {Q}_0|$$

의 차이가 충분히 작아야 한다. 만약에 이 두 길이의 차이기 정해진 임계값보다도 크면 Bezier curve를 둘로 분할해서 좌우 두 Bezier curve에 대해서 동일한 검사를 한다. 충분히 평탄한 경우는 위의 평균값으로 근사하고 그렇지 못한 경우는 충분히 평탄해질 때까지 분할하는 과정을 반복한다. 아래 코드는 3차 Bezier curve의 길이를 이 알고리즘을 이용해서 구하는 과정을 구현한 것이다.

#define DistL2(A, B) sqrt(((A).x-(B).x)*((A).x-(B).x) + ((A).y-(B).y)*((A).y-(B).y))
static void BezierSubDiv(CfPt Q[4], CfPt leftQ[4], CfPt rightQ[4]) {
    CfPt T[4][4];                      /* Triangle Matrix */
    for (int j = 0; j < 4; ++j) T[0][j] = Q[j];
    // de Casteljau divides and conquers at t = 0.5;
    for (int i = 1; i < 4; ++i)
        for (int j = 0 ; j <= 3 - i; ++j)
            T[i][j] = (T[i - 1][j] + T[i - 1][j + 1]) / 2;
            
    // left subdiv control points;
    for (int j = 0; j < 4; ++j) leftQ[j]  = T[j][0];
    // right subdiv control points;
    for (int j = 0; j < 4; ++j) rightQ[j] = T[3 - j][j];
}                                        
void BezierLength(CfPt Q[4], double tol, double *length) {
    CfPt leftQ[4], rightQ[4];                
    double controlLen = 0;  
    for (int i = 0; i < 3; ++i) controlLen += DistL2(Q[i], Q[i + 1]);
    double cordLen = DistL2(Q[0], Q[3]);
    // test flatness;
    if (fabs(controlLen - cordLen) > tol) {
        BezierSubDiv(Q, leftQ, rightQ);              /* divide */
        BezierLength(leftQ, tol, length);            /* left side */
        BezierLength(rightQ, tol, length);           /* right side */
        return;
    }
    *length = *length + (cordLen + controlLen) / 2 ;
    return ;
}

De Casteljau's algorithm

int main() {
    double k[4] = {0.5522847498, //touch at t = 0.5;
                   0.551915023,  //min-deviation;
                   0.551778477,  //match area;
                   0.551777131   //match length;
                   };
    for (int i = 0; i < 4; i++)
        printf("bezier length = %.8f\n", BezierLengthCircle(k[i]));
    printf("exact length  = %.8f\n", 2.0 * atan(1.));
    return 0;
}
double BezierLengthCircle(double k) {
    CfPt Q[4] = {{0, 1.}, {k, 1.}, {1., k}, {1., 0.}};
    double len = 0;
    double tol = 1.e-20;//
    BezierLength(Q, tol, &len);
    return len;
};

 

'Computational Geometry' 카테고리의 다른 글

Convexity in Bezier Curve  (0) 2021.04.22
De Casteljau's Algorithm  (0) 2021.04.22
Bezier Curve Arc Length  (0) 2021.04.21
Bezier Curve Approximation of an Ellipse  (0) 2021.04.11
Bezier Curve Approximation of a Circle  (0) 2021.04.10
Bresenham's Line Algorithm  (0) 2021.04.07
Posted by helloktk

댓글을 달아 주세요