한 개의 Bezier 곡선을 이용해서 원을 표현할 수 없음은 잘 알려진 사실이다. 그럼 Bezier 곡선을 이용해서 얼마나 원(호)을 잘 근사할 수 있을까? 원점에 중심을 둔 반지름 1인 원의 1 사분면 원호가 3차 Bezier 곡선으로 얼마나 잘 표현되는지 알아보자. 3차 Bezier 곡선은 4개의 control point $\{ \mathbf {P}_i | i=0,1,2, 3\}$이 주어진 경우

$$ \mathbf {B}(t) = (1-t^3) \mathbf {P}_0 + 3t(1-t)^2 \mathbf {P}_1 + 3t^2 (1-t) \mathbf {P}_2 + t^3 \mathbf {P}_3$$

으로 표현된다. 원호 근사에 필요한 control point의 위치는 다음 조건을 부여하면 얻을 수 있다.

(1) 시작점($t=0$)과 끝점($t=1$)은 원 위에 있어야 하므로

$$\mathbf {B}(t=0) = (0,1) \quad \rightarrow \quad \mathbf {P_0} = (0,1),$$

$$\mathbf {B}(t=1) = (1,0) \quad \rightarrow \quad \mathbf {P_3} = (1,0).$$

또 시작점과 끝점에서 접선이 원에도 접해야 하므로

$$ {\mathbf {B}'}(t=0) \propto (1,0)\quad \text {and}\quad {\mathbf {B}'}(t=1)\propto (0,-1)$$

에서 나머지 두 control point는 다음과 같이 쓸 수 있다:

$$ \mathbf {P}_1 = (k, 1), \quad \mathbf {P}_2 = (1, k).$$

그럼 $k$ 값은 어떻게 정할 수 있을까?

(2-1) Bezier 곡선의 중간지점이  원 위에 있도록 조건을 부여하면

$$ \mathbf {B}(t=1/2) = (1/\sqrt {2}, 1/\sqrt {2})$$

을 얻고, 이를 이용하면

$$k= \frac {4}{3} (\sqrt {2}-1) = 0.5522847498...$$

을 얻는다.

그럼 원에서 얼마나 벗어날까? 원 중심에서 거리를 차이를 구해보면 Bezier 곡선이 항상 원의 바깥으로 치우쳐 있음을 알 수 있다:

$$\Delta(t) = ||\mathbf {B}(t)||-1\ge 0$$ 

최대로 벗어나는 정도는 $t=(3\pm \sqrt{3})/6$일 때 $\Delta_\text {max}=\frac{1}{3}\sqrt{ \frac{71}{6}-2\sqrt{2}}-1=0.00027253...$이므로 대부분의 경우 크게 벗어남이 없는 원의 근사를 준다.

(2-2) $t=1/2$에서 Bezier 곡선이 원을 통과하는 조건 대신 원에서 벗어남을 최소로 하는 조건을 부여하면 더 좋은 근사를 얻을 수 있다:

$$k=\text{argmin}|\Delta|_\text{max}$$

이 경우  Bezier 곡선은 원의 바깥에 놓이지 않고 교차하게 된다. $t=1/2$에서 최솟값, $t=\frac{1}{2}\left(1\pm \frac{\sqrt{3k^2+20k -12}}{2-3k}\right) $일 때 최댓값을 가지는데, 두 값의 절댓값이 같게 되려면(closed form이 없다)

$$ k = 0.551915023...$$

을 선택해야 하고, 이때 벗어남의 최댓값은 $|\Delta|_\text{max} =  0.00019607...$이므로 더 좋은 근사가 된다.

 

(2-3) 또 다른 제한조건은 없을까? Bezier 곡선이 만드는 면적이 사분원의 면적을 표현하도록 제한을 가하는 경우:

$$\frac{\pi}{4} = \int_{0}^{1} \frac{1}{2}\left( B_y B'_x - B_x B'_y\right) dt \\ = \int_0^1  \left(-\frac{3}{2} \left(3 k^2 (t-1)^2 t^2+k \left(-2 t^4+4 t^3-6 t^2+4 t-1\right)+2 (t-1) t\right) \right)dt \\= \frac{1}{2}+\frac{3k}{5}-\frac{3k^2}{20}$$ 에서 

$$ k = 2 - \sqrt{ \frac{22 - 5 \pi }{3}} =0.551778477...$$

이다. 이 경우 면적은 같으나 벗어남 오차는 $t=1/2$일 때

$$|\Delta |_\text{max} = \frac{1}{8} \sqrt{332-40 \sqrt{66-15 \pi }-30 \pi }-1= 0.00026849...$$

로 주어지는데, 중심을 지나는 경우보다는 벗어남이 작지만 최소는 아니다.

(2-4) Bezier 곡선의 길이가 원주가 되는 제한조건을 걸 수도 있다:

$$\frac{\pi}{2}  = \int_0^1\sqrt{ (B'_x)^2 + (B'_y)^2}dt.$$

그런데 우측 적분이 closed form으로 주어지지 않는다. 때문에 $k$ 값을 구하기 위해서 전적으로 numerical method에 의존해야 되는데,  그 결과만 쓰면

$$k=0.551777131...$$

728x90

'Computational Geometry' 카테고리의 다른 글

Arc Length of Bezier Curves  (0) 2021.04.21
Bezier Curve Approximation of an Ellipse  (0) 2021.04.11
Bresenham's Line Algorithm  (0) 2021.04.07
Rotating Calipers  (3) 2021.03.31
Convex Hull Peeling  (0) 2021.03.29
Posted by helloktk
,